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DEDICATION

To my parents.

Thanks for the genes, and everything since.
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EPIGRAPH

I’m gonna hear my favorite song,

if it takes all night.1

Frank Black, “If It Takes All Night.”

1Clearly, the author is lamenting the inefficiencies of broadcast radio programming.
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ABSTRACT OF THE DISSERTATION

More like this: machine learning approaches to music similarity

by

Brian McFee
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Professor Sanjoy Dasgupta, Co-Chair
Professor Gert Lanckriet, Co-Chair

The rise of digital music distribution has provided users with unprecedented ac-

cess to vast song catalogs. In order to help users cope with large collections, music

information retrieval systems have been developed to automatically analyze, index, and

recommend music based on a user’s preferences or search criteria.

This dissertation proposes machine learning approaches to content-based, query-

by-example search, and investigates applications in music information retrieval. The

proposed methods automatically infer and optimize content-based similarity, fuse het-

erogeneous feature modalities, efficiently index and search under the optimized distance

metric, and finally, generate sequential playlists for a specified context or style. Robust
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evaluation procedures are proposed to counteract issues of subjectivity and lack of ex-

plicit ground truth in music similarity and playlist generation.
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Chapter 1

Introduction

1.1 Music information retrieval

Within the span of a decade, digital distribution has radically changed the ways

in which people discover and interact with recorded music. In the past, the musical

content available to a person was generally limited to a personal collection (perhaps a

few thousand songs), or broadcast media (typically a few dozen stations in a given re-

gion). Now, online services such as iTunes,1 Spotify,2 Rdio,3 and Mog4 offer immediate

access to tens of millions of songs at the click of a button. This rapid increase in the

quantity of available songs can lead to severe information overload. Paradoxically, the

overabundance of content can make it more difficult for a user to decide what to listen

to next, and inhibit the discovery new music (Schwartz, 2004). This has motivated the

development of music information retrieval (MIR) technology, which broadly aims to

assist users in interacting with musical data.

At a high level, present industrial-strength MIR technology fall into two broad

categories: those based on meta-data and semantic annotation, and those based on col-

laborative filtering.5 Services based on semantic annotation, such as the Music Genome

1http://www.apple.com/itunes
2http://www.spotify.com
3http://www.rdio.com
4http://www.mog.com
5Of course, this is a vast over-simplification; successful systems in all likelihood combine a variety of

techniques.

1

http://www.apple.com/itunes
http://www.spotify.com
http://www.rdio.com
http://www.mog.com
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Project,6 rely on human experts to annotate each song with musically relevant words.

These semantic annotations can then be used to index, search, and recommend mu-

sic. While highly accurate, this approach is expensive and labor-intensive, requiring a

trained expert to spend up to 30 minutes to annotate a single song (Pandora Media, Inc.,

2010).

By contrast, services based on collaborative filtering forego expensive (manual)

analysis, and instead rely upon co-occurrence patterns in the purchasing (listening) his-

tories of users to index music. Undoubtedly, the most famous example of a collaborative

filtering recommendation engine is that of Netflix,7 but iTunes, Amazon,8 and Last.fm9

are also known to use collaborative filtering to provide recommendations (Barrington

et al., 2009).

For popular, commercially successful music, a wealth of information is available

on the Internet, which can be used to represent and index musical content. This informa-

tion can take a variety of forms, including lyrics, artist biography text, genre annotations,

critical reviews, purchase data and chart ratings, etc.. When such meta-data is abundant

and readily available, it may be indexed and searched by standard text-based informa-

tion retrieval technology. Similarly, by its very definition, popular music tends to be

consumed by a large number of users, ensuring good representation in a collaborative

filter.

Unfortunately, collaborative filters do not degrade gracefully when faced with

novel or less popular content. Descriptive information is harder to collect for unpopular

items; in extreme cases, the only available content might be an audio file uploaded to an

artist’s profile on a social network. Again, by definition, unpopular items receive little

representation in a collaborative filter. Both systems, therefore, are susceptible to the

cold start problem: certain items will remain perpetually invisible to both the search or

recommendation engine, and the end users.

This lack of high-quality meta-data and listening history for less-popular artists

— the “long tail” (Anderson, 2006) — has motivated researchers to pursue content-

6http://www.pandora.com/about/mgp
7http://www.netflix.com
8http://www.amazon.com
9http://www.last.fm/

http://www.pandora.com/about/mgp
http://www.netflix.com
http://www.amazon.com
http://www.last.fm/
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based information retrieval systems, which operate upon representations extracted di-

rectly from the music signal itself. A large component of the research on this topic

attempts to automate the semantic annotation process by using machine learning algo-

rithms to predict genre (Tzanetakis and Cook, 2002, McKinney and Breebaart, 2003)

or more general textual descriptors (tags) (Barrington et al., 2007, Turnbull et al., 2008,

Hoffman et al., 2009). A parallel line of work has focused on the problem of directly

modeling similarity between songs (Aucouturier and Pachet, 2002, Ellis et al., 2002,

Logan, 2004, Vignoli and Pauws, 2005, Pampalk et al., 2005, Flexer et al., 2008).

From a user’s perspective, the interface can be just as important as the back-

end technology. Numerous search interfaces have been proposed, starting from familiar

text-based search for simple meta-data descriptors such as artist or song title, and rang-

ing to more exotic interfaces, such as query-by-humming, -beat-boxing, -tapping, and

-keyboard (Dannenberg et al., 2004, Kapur et al., 2004, Eisenberg et al., 2004, Typke,

2006). While the latter interfaces are perhaps more musically oriented, they require a

non-trivial amount of musical skill on behalf of the user to be used effectively.

This dissertation investigates the query-by-example search paradigm for music

information retrieval. Rather than force a user to express search criteria in vague or

imprecise language — the canonical example being rock — an example-based music

search allows the user to use known songs to query the database. This approach has

numerous advantages: (1) it provides a simple, but powerful search interface for novice

users, “find me songs that sound like ____”; (2) it obviates the need to define and educate

users about a search vocabulary ; (3) the underlying methodology integrates well with

a variety of musically relevant tasks, including recommendation and sequential playlist

generation ; and (4) as will be demonstrated in this dissertation, the core similarity

and retrieval functions are amenable to optimization by machine learning algorithms.

Indeed, many successful online radio services are built around the query-by-example

principle: Pandora10 and Last.fm both allow users to seed a personalized radio station

with one or more example songs and artists.

Ultimately, the quality of a query-by-example system depends on the ability to

accurately determine similarity between the query and each item in the database. In the

10http://www.pandora.com

http://www.pandora.com
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context of music information retrieval, this observation raises several natural questions:

• How should similarity between songs be computed?

• What is ground truth for evaluating music similarity?

• How can we take advantage of rich, multi-media content associated with music?

• Can similarity search be done efficiently, and scale to millions of songs?

• How can similarity search be integrated with common modes of music delivery,

such as sequential playlist generation?

The goal of this dissertation is to address these questions, first by developing the core

machine learning algorithms to optimize content-based similarity functions, and then by

evaluating the resulting techniques in realistic application settings.

1.2 Summary of contributions

This dissertation is organized into two parts. The first part (chapters 2 to 4)

develops the core machine learning framework for query-by-example information re-

trieval, while the second part (chapters 5 to 7) explores various applications in music

similarity search and playlist generation.

Chapter 2 describes a multiple kernel framework to integrate descriptive fea-

tures across multiple heterogeneous modalities, such as audio waveforms and plain text

documents. In order to accomplish this task, chapter 2 also develops a graph-theoretic

approach to cope with issues of label noise and subjectivity when processing human-

generated similarity measurements between abstract objects (like songs or artists).

Chapter 3 develops an algorithm for learning a distance metric to optimize struc-

tured outputs, specifically, rankings induced by nearest-neighbor search. chapter 4 pro-

vides an improved, efficient optimization algorithm to solve the structural metric learn-

ing problem described in chapter 3.

Chapter 5 proposes an efficient and robust technique for assessing similarity be-

tween musical items through an implicit-feedback collaborative filter. This definition of
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musical similarity is then used to train a content-based similarity metric via the algo-

rithm described in chapter 3, which can be extended to out-of-sample, long-tail data.

Chapter 6 contains an evaluation of spatial data structures to accelerate content-

based similarity search over a large music database of one million songs.

Finally, chapter 7 proposes an efficient and objective evaluation framework for

playlist generation algorithms, and develops a generative playlist model based upon

hyper-graph random walks. The proposed model robustly integrates heterogeneous fea-

tures, and readily scales to hundreds of thousands of songs.

1.3 Preliminaries

Several concepts and notations are used throughout the dissertation. This sec-

tion provides a brief summary of frequently used symbols and terms; infrequently used

notation will be defined as needed in each chapter. Table 1.1 provides a brief summary

of the remaining, standard notation and symbols used throughout the dissertation.

A great deal of the dissertation deals with defining and learning distances over

vectors, which will typically be denoted in lower-case, e.g., x ∈ Rd denotes a d-

dimensional real-valued vector. Matrices will be denoted by upper-case letters, e.g.,

A ∈ Rd×n denotes a d× n matrix of reals, and Ai denotes the ith column vector of A. A

square, symmetric matrix A ∈ Sd has a spectral decomposition, denoted

A = V ΛV T,

where each column of V is an eigenvector ofA, and Λ is a diagonal matrix containing the

eigenvalues λi of A. By convention, the eigenvalues (and corresponding eigenvectors)

will be assumed to be arranged in non-increasing order: λ1 ≥ λ2 ≥ · · · ≥ λd.

Of particular interest are the d × d real symmetric matrices, denoted by Sd, and

the positive semi-definite matrices Sd+:

Sd+ ··=
{
W
∣∣ W ∈ Sd, ∀x ∈ Rd : xTWx ≥ 0

}
.

A matrix W ∈ Sd+ defines a Mahalanobis distance between vectors a, b ∈ Rd (Maha-
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lanobis, 1936):11

‖a− b‖W ··=
√

(a− b)TW (a− b).

Many of the methods described in this dissertation involve finding an optimum

of a real-valued, (convex) function on a convex set U , f : U → R. In general, optima

will be indicated by an over-line, i.e., ∀W ∈ U : f
(
W
)
≤ f(W ). When a function

f is differentiable, its gradient at W is denoted by ∇f(W ). If f is convex, but not

differentiable, ∂f(W ) will denote the sub-differential set at W :

∂f(W ) ··= { v | ∀W ′ ∈ U : f(W ′) ≥ f(W ) + 〈v,W ′ −W 〉 } ,

and∇·f(W ) ∈ ∂f(W ) will indicate a sub-gradient at W .

For a point x ∈ U and a convex set S ⊆ U , the orthogonal projection of x onto

S is denoted by

ΠS[x] ··= argmin
x′∈S

‖x− x′‖,

where the underlying distance metric ‖ · ‖ will be clear from context.

11More precisely, the distance defined by Mahalanobis (1936) uses the particular choice of W = Σ−1

(the inverse covariance matrix), but the term is often broadly applied to a distance derived from any
W ∈ Sd+.
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Table 1.1: Symbols and notation used throughout this dissertation.

Symbol Definition

Rd (Rd
+) d-dimensional, real-valued, (non-negative) vectors

Sd (Sd+) d×d symmetric, real, (positive semi-definite) matrices

0,1 the all zeros or all ones vector

ei the ith standard basis vector

Ai the ith column vector of a matrix A: Aei
〈a, b〉 Euclidean inner product: aTb =

∑
i aibi

〈A,B〉F Frobenius inner product: tr (ATB) =
∑

i,j AijBij

‖a− b‖W Mahalanobis distance

ΠS[x] the orthogonal projection of x onto a convex set S

∂f(W ) the sub-differential set of a convex function f at W

∇f(W ) the gradient of a differentiable function f(W )

∇·f(W ) a sub-gradient of f at W (element of ∂f(W ))

JzK 0-1 indicator of the event z



Chapter 2

Learning multi-modal similarity

2.1 Introduction

In applications such as content-based recommendation systems, the definition of

a proper similarity measure between items is crucial to many tasks, including nearest-

neighbor retrieval and classification. In some cases, a natural notion of similarity may

emerge from domain knowledge, for example, cosine similarity for bag-of-words mod-

els of text. However, in more complex, multi-media domains, there is often no obvious

choice of similarity measure. Rather, viewing different aspects of the data may lead to

several different, and apparently equally valid notions of similarity. For example, if the

corpus consists of musical data, each song or artist may be represented simultaneously

by acoustic features (such as rhythm and timbre), semantic features (tags, lyrics), or

social features (collaborative filtering, artist reviews and biographies, etc.). Although

domain knowledge may be incorporated to endow each representation with an intrin-

sic geometry—and, therefore, a sense of similarity—the different notions of similarity

may not be mutually consistent. In such cases, there is generally no obvious way to

combine representations to form a unified similarity space which optimally integrates

heterogeneous data.

Without extra information to guide the construction of a similarity measure, the

situation seems hopeless. However, if some side-information is available, for exam-

ple, as provided by human labelers, it can be used to formulate a learning algorithm to

optimize the similarity measure.

5
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This idea of using side-information to optimize a similarity function has received

a great deal of attention in recent years. Typically, the notion of similarity is captured by

a distance metric over a vector space (e.g., Euclidean distance in Rd), and the problem

of optimizing similarity reduces to finding a suitable embedding of the data under a spe-

cific choice of the distance metric. Metric learning methods, as they are known in the

machine learning literature, can be informed by various types of side-information, in-

cluding class labels (Xing et al., 2003, Goldberger et al., 2005, Globerson and Roweis,

2006, Weinberger et al., 2006), or binary similar/dissimilar pairwise labels (Wagstaff

et al., 2001, Shental et al., 2002, Bilenko et al., 2004, Globerson and Roweis, 2007,

Davis et al., 2007). Alternatively, multidimensional scaling (MDS) techniques are typi-

cally formulated in terms of quantitative (dis)similarity measurements (Torgerson, 1952,

Kruskal, 1964, Cox and Cox, 1994, Borg and Groenen, 2005). In these settings, the rep-

resentation of data is optimized so that distance (typically Euclidean) conforms to side-

information. Once a suitable metric has been learned, similarity to new, unseen data can

be computed either directly (if the metric takes a certain parametric form, for example,

a linear projection matrix), or via out-of-sample extensions (Bengio et al., 2004).

To guide the construction of a similarity space for multi-modal data, we adopt the

idea of using similarity measurements, provided by human labelers, as side-information.

However, it has to be noted that, especially in heterogeneous, multi-media domains,

similarity may itself be a highly subjective concept and vary from one labeler to the

next (Ellis et al., 2002). Moreover, a single labeler may not be able to consistently

decide if or to what extent two objects are similar, but she may still be able to reliably

produce a rank-ordering of similarity over pairs (Kendall and Gibbons, 1990). Thus,

rather than rely on quantitative similarity or hard binary labels of pairwise similarity, it

is now becoming increasingly common to collect similarity information in the form of

triadic or relative comparisons (Schultz and Joachims, 2004, Agarwal et al., 2007), in

which human labelers answer questions of the form:

“Is x more similar to y or z?”

Although this form of similarity measurement has been observed to be more stable than

quantitative similarity (Kendall and Gibbons, 1990), and clearly provides a richer repre-

sentation than binary pairwise similarities, it is still subject to problems of consistency
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and inter-labeler agreement. It is therefore imperative that great care be taken to ensure

some sense of robustness when working with perceptual similarity measurements.

In the present work, our goal is to develop a framework for integrating multi-

modal data so as to optimally conform to perceptual similarity encoded by relative com-

parisons. In particular, we follow three guiding principles in the development of our

framework:

1. The algorithm should be robust against subjectivity and inter-labeler disagree-

ment.

2. The algorithm must be able to integrate multi-modal data in an optimal way, that

is, the distances between embedded points should conform to perceptual similarity

measurements.

3. It must be possible to compute distances to new, unseen data as it becomes avail-

able.

We formulate this problem of heterogeneous feature integration as a learning

problem: given a data set, and a collection of relative comparisons between pairs, we

learn a representation of the data that optimally reproduces the similarity measurements.

This type of embedding problem has been previously studied by Agarwal et al. (2007)

and Schultz and Joachims (2004). However, Agarwal et al. (2007) provide no out-of-

sample extension, and neither support heterogeneous feature integration, nor do they

address the problem of noisy similarity measurements.

A common approach to optimally integrate heterogeneous data is based on multi-

ple kernel learning, where each kernel encodes a different modality of the data. Hetero-

geneous feature integration via multiple kernel learning has been addressed by previous

authors in a variety of contexts, including classification (Lanckriet et al., 2004, Zien and

Ong, 2007, Kloft et al., 2009, Jagarlapudi et al., 2009), regression (Sonnenburg et al.,

2006, Bach, 2008, Cortes et al., 2009), and dimensionality reduction (Lin et al., 2009).

However, none of these methods specifically address the problem of learning a unified

data representation which conforms to perceptual similarity measurements.
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Feature space 1
Feature space 2
Feature space 3

d(i,j) < d(i,k)

Multiple kernel
embedding

Graph
processing

Data

Figure 2.1: An overview of our proposed framework for multi-modal feature integra-

tion. Data is represented in multiple feature spaces, and humans supply perceptual simi-

larity measurements in the form of relative pairwise comparisons , which processed and

used as constraints to optimize the multiple kernel embedding.

2.1.1 Contributions

Our contributions in this chapter are two-fold. First, we develop the partial order

embedding (POE) framework (McFee and Lanckriet, 2009b), which allows us to use

graph-theoretic algorithms to filter a collection of subjective similarity measurements for

consistency and redundancy. We then formulate a novel multiple kernel learning (MKL)

algorithm which learns an ensemble of feature space projections to produce a unified

similarity space. Our method is able to produce non-linear embedding functions which

generalize to unseen, out-of-sample data. Figure 2.1 provides a high-level overview of

the proposed methods.

The remainder of this chapter is structured as follows. In section 2.2, we develop

a graphical framework for interpreting and manipulating subjective similarity measure-

ments. In section 2.3, we derive an embedding algorithm which learns an optimal trans-

formation of a single feature space. In section 2.4, we develop a novel multiple-kernel

learning formulation for embedding problems, and derive an algorithm to learn an opti-

mal space from heterogeneous data. Section 2.5 provides experimental results illustrat-

ing the effects of graph-processing on noisy similarity data, and the effectiveness of the

multiple-kernel embedding algorithm on a music similarity task with human perception
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measurements. Finally, we prove hardness of dimensionality reduction in this setting in

section 2.6, and conclude in section 2.7.

2.1.2 Preliminaries

A (strict) partial order is a binary relationR over a set Z (R⊆Z2) which satisfies

the following properties:1

• Irreflexivity: (a, a) /∈ R,

• Transitivity: (a, b) ∈ R ∧ (b, c) ∈ R⇒ (a, c) ∈ R,

• Anti-symmetry: (a, b) ∈ R⇒ (b, a) /∈ R.

Every partial order can be equivalently represented as a directed acyclic graph

(DAG), where each vertex is an element of Z and an edge is drawn from a to b if

(a, b) ∈ R. For any partial order,R may refer to either the set of ordered tuples { (a, b) }
or the graph (DAG) representation of the partial order; the use will be clear from context.

For a directed graph G, we denote by G∞ its transitive closure, that is, G∞

contains an edge (i, j) if and only if there exists a path from i to j in G. Similarly, the

transitive reduction (denoted Gmin) is the minimal graph with equivalent transitivity to

G, that is, the graph with the fewest edges such that
(
Gmin

)∞
= G∞.

Let X ··= { x1, x2, . . . , xn } denote the training set of n items. A Euclidean em-

bedding is a function g : X → Rd which maps X into a d-dimensional space equipped

with the Euclidean (`2) metric:

‖xi − xj‖2 ··=
√
〈xi − xj, xi − xj〉.

For any matrix A, let Ai denote its ith column vector. A symmetric matrix A ∈
Sn has a spectral decomposition A = V ΛV T, where Λ ··= diag(λ1, λ2, . . . , λn) is a

diagonal matrix containing the eigenvalues of A, and V contains the eigenvectors of A.

We adopt the convention that eigenvalues (and corresponding eigenvectors) are sorted

in descending order. W is positive semi-definite (PSD), denoted by W ∈ Sd+, if each

1The standard definition of a (non-strict) partial order also includes the reflexive property: ∀a, (a, a) ∈
R. For reasons that will become clear in section 2.2, we take the strict definition here, and omit the
reflexive property.
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eigenvalue is non-negative: λi ≥ 0, i = 1, . . . , d. Finally, a PSD matrix W gives rise to

the Mahalanobis distance function

‖xi − xj‖W ··=
√

(xi − xj)TW (xi − xi).

2.2 A graphical view of similarity

Before we can construct an embedding algorithm for multi-modal data, we must

first establish the form of side-information that will drive the algorithm, that is, the

similarity measurements that will be collected from human labelers. There is an ex-

tensive body of work on the topic of constructing a geometric representation of data to

fit perceptual similarity measurements. Primarily, this work falls under the umbrella of

multi-dimensional scaling (MDS), in which perceptual similarity is modeled by numer-

ical responses corresponding to the perceived “distance” between a pair of items, for

example, on a similarity scale of 1–10. (See Cox and Cox 1994 and Borg and Groenen

2005 for comprehensive overviews of MDS techniques.)

Because “distances” supplied by test subjects may not satisfy metric properties

— in particular, they may not correspond to Euclidean distances — alternative non-

metric MDS (NMDS) techniques have been proposed (Kruskal, 1964). Unlike classical

or metric MDS techniques, which seek to preserve quantitative distances, NMDS seeks

an embedding in which the rank-ordering of distances is preserved.

Since NMDS only needs the rank-ordering of distances, and not the distances

themselves, the task of collecting similarity measurements can be simplified by asking

test subjects to order pairs of points by similarity:

“Are i and j more similar than k and `?”

or, as a special case, the “triadic comparison”

“Is i more similar to j or `?”

Based on this kind of relative comparison data, the embedding problem can be formu-

lated as follows. Given is a set of objects X , and a set of similarity measurements

A ··= { (i, j, k, `) } ⊆ X 4,
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A =


(j, k, j, `), (j, k, i, k),

(j, `, i, k), (i, `, j, `),

(i, `, i, j), (i, j, j, `)


Figure 2.2: The graph representation (left) of a set of relative comparisons (right).

where a tuple (i, j, k, `) is interpreted as “i and j are more similar than k and `.” (This

formulation subsumes the triadic comparisons model when i = k.) The goal is to find

an embedding function g : X → Rd such that

∀(i, j, k, `) ∈ A : ‖g(i)− g(j)‖2 + 1 < ‖g(k)− g(`)‖2. (2.1)

The unit margin is forced between the constrained distances for numerical stability.

Agarwal et al. (2007) work with this kind of relative comparison data and de-

scribe a generalized NMDS algorithm (GNMDS), which formulates the embedding

problem as a semi-definite program. Schultz and Joachims (2004) derive a similar algo-

rithm which solves a quadratic program to learn a linear, axis-aligned transformation of

data to fit relative comparisons.

Previous work on relative comparison data treats each measurement (i, j, k, `) as

effectively independent (Schultz and Joachims, 2004, Agarwal et al., 2007). However,

due to their semantic interpretation as encoding pairwise similarity comparisons, and

the fact that a pair (i, j) may participate in several comparisons with other pairs, there

may be some global structure to A which these previous methods are unable to exploit.

In section 2.2.1, we develop a graphical framework to infer and interpret the

global structure exhibited by the constraints of the embedding problem. Graph-theoretic

algorithms presented in section 2.2.2 then exploit this representation to filter this collec-

tion of noisy similarity measurements for consistency and redundancy. The final, re-

duced set of relative comparison constraints defines a partial order, making for a more

robust and efficient embedding problem.
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2.2.1 Similarity graphs

To gain more insight into the underlying structure of a collection of compar-

isons A, we can represent A as a directed graph over X 2. Each vertex in the graph

corresponds to a pair (i, j) ∈ X 2, and an edge from (i, j) to (k, `) corresponds to a

similarity measurement (i, j, k, `) (see fig. 2.2). Interpreting A as a graph will allow us

to infer properties of global (graphical) structure of A. In particular, two facts become

immediately apparent:

1. If A contains cycles, then there exists no embedding which can satisfy A.

2. If A is acyclic, any embedding that satisfies the transitive reduction Amin also

satisfies A.

The first fact implies that no algorithm can produce an embedding which satisfies

all measurements if the graph is cyclic. In fact, the converse of this statement is also

true: if A is acyclic, then an embedding exists in which all similarity measurements are

preserved (see section 2.A). IfA is cyclic, however, by analyzing the graph, it is possible

to identify an “unlearnable” subset of A which must be violated by any embedding.

Similarly, the second fact exploits the transitive nature of distance comparisons.

In the example depicted in fig. 2.2, any g that satisfies (j, k, j, `) and (j, `, i, k) must

also satisfy (j, k, i, k). In effect, the constraint (j, k, i, k) is redundant, and may also be

safely omitted from A.

These two observations allude to two desirable properties in A for embedding

methods: transitivity and anti-symmetry. Together with irreflexivity, these fit the defin-

ing characteristics of a partial order. Due to subjectivity and inter-labeler disagreement,

however, most collections of relative comparisons will not define a partial order. Some

graph processing, presented next, based on an approximate maximum acyclic subgraph

algorithm, can reduce them to a partial order.

2.2.2 Graph simplification

Because a set of similarity measurements A containing cycles cannot be em-

bedded in any Euclidean space, A is inherently inconsistent. Cycles in A therefore
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Algorithm 2.1 Approximate maximum acyclic subgraph (Aho et al., 1972)

Input: Directed graph G = (V,E)

Output: Acyclic graph G

1: E ← ∅
2: for each (u, v) ∈ E in random order do

3: if E ∪ { (u, v) } is acyclic then

4: E ← E ∪ { (u, v) }
5: end if

6: end for

7: G← (V,E)

constitute a form of label noise. As noted by Angelova (2004), label noise can have

adverse effects on both model complexity and generalization. This problem can be mit-

igated by detecting and pruning noisy (confusing) examples, and training on a reduced,

but certifiably “clean” set (Angelova et al., 2005, Vezhnevets and Barinova, 2007).

Unlike most settings, where the noise process affects each label independently—

for example, random classification noise (Angluin and Laird, 1988) — the graphical

structure of interrelated relative comparisons can be exploited to detect and prune in-

consistent measurements. By eliminating similarity measurements which cannot be re-

alized by any embedding, the optimization procedure can be carried out more efficiently

and reliably on a reduced constraint set.

Ideally, when eliminating edges from the graph, we would like to retain as much

information as possible. Unfortunately, this is equivalent to the maximum acyclic sub-

graph problem, which is NP-complete (Garey and Johnson, 1979). A 1/2-approximate

solution can be achieved by a simple greedy algorithm (algorithm 2.1) (Berger and Shor,

1990).

Once a consistent subset of similarity measurements has been produced, it can

be simplified further by pruning redundancies. In the graph view of similarity measure-

ments, redundancies can be easily removed by computing the transitive reduction of the

graph (Aho et al., 1972).

By filtering the constraint set for consistency, we ensure that embedding algo-
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rithms are not learning from spurious information. Additionally, pruning the constraint

set by transitive reduction focuses embedding algorithms on the most important core set

of constraints while reducing overhead due to redundant information.

2.3 Partial order embedding

Now that we have developed a language for expressing similarity between items,

we are ready to formulate the embedding problem. In this section, we develop an algo-

rithm that learns a representation of data consistent with a collection of relative similar-

ity measurements, and allows to map unseen data into the learned similarity space after

learning. In order to accomplish this, we will assume a feature representation for X . By

parameterizing the embedding function g in terms of the feature representation, we will

be able to apply g to any point in the feature space, thereby generalizing to data outside

of the training set.

2.3.1 Linear projection

To start, we assume that the data originally lies in some Euclidean space, that is,

X ⊂ RD. There are of course many ways to define an embedding function g : RD →
Rd. Here, we will restrict attention to embeddings parameterized by a linear projection

matrix M , so that for a vector x ∈ RD,

g(x) ··= Mx.

Collecting the vector representations of the training set as columns of a matrix X ∈
RD×n, the inner product matrix of the embedded points can be characterized as

A ··= XTMTMX.

Now, for a relative comparison (i, j, k, `), we can express the distance constraint

(eq. (2.1)) between embedded points as follows:

(Xi −Xj)
TMTM(Xi −Xj) + 1 ≤ (Xk −X`)

TMTM(Xk −X`).

These inequalities can then be used to form the constraint set of an optimization problem

to solve for an optimal M . Because, in general, A may not be satisfiable by a linear
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projection of X , we soften the constraints by introducing a slack variable ξijk` ≥ 0

for each constraint, and minimize the empirical hinge loss over constraint violations
1/|A|

∑
A ξijk`. This choice of loss function can be interpreted as a convex approximation

to a generalization of the area under an ROC curve (see section 2.C).

To avoid over-fitting, we introduce a regularization term tr(MTM) = 〈M,M〉F,

and a trade-off parameter C > 0 to control the balance between regularization and loss

minimization. This leads to a regularized risk minimization objective:

min
M,ξ≥0

〈M,M〉F +
C

|A|
∑
A

ξijk` (2.2)

s. t.∀(i, j, k, `) ∈ A :

(Xi −Xj)
TMTM(Xi −Xj) + 1 ≤ (Xk −X`)

TMTM(Xk −X`) + ξijk`.

After learning M by solving this optimization problem, the embedding can be extended

to out-of-sample points x′ by applying the projection: x′ 7→Mx′.

Note that the distance constraints in eq. (2.2) involve differences of quadratic

terms, and are therefore not convex. However, since M only appears in the form MTM

in eq. (2.2), the optimization problem can be expressed in terms of a positive semi-

definite matrix

W ··= MTM ∈ SD+ .

This change of variables results in algorithm 2.2, a (convex) semi-definite programming

(SDP) problem (Boyd and Vandenberghe, 2004), since objective and constraints are

linear in W , including the constraint W ∈ SD+ . The corresponding inner product matrix

is

A = XTWX.

Finally, after the optimal W is found, the embedding function g : RD → RD can

be recovered from the spectral decomposition of W :

W = V ΛV T ⇒ g(x) ··= Λ1/2V Tx,

and a d-dimensional approximation can be recovered by taking the leading d eigenvec-

tors of W .
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Algorithm 2.2 Linear partial order embedding (LPOE)

Input: n objects X , partial order A, data matrix X ∈ RD×n, C > 0

Output: mapping g : X → Rd

min
W,ξ
〈W, I〉F +

C

|A|
∑
A

ξijk`

s. t. ∀(i, j, k, `) ∈ A : d(xi, xj) + 1 ≤ d(xk, x`) + ξijk`

0 ≤ ξijk`

W ∈ SD+

d(xi, xj) ··= (Xi −Xj)
TW (Xi −Xj)

2.3.2 Non-linear projection via kernels

The formulation in algorithm 2.2 can be generalized to support non-linear em-

beddings by the use of kernels. Following the method of Globerson and Roweis (2007),

we first map the data into a reproducing kernel Hilbert space (RKHS) H via a feature

map φ with corresponding kernel function

k(x, y) ··= 〈φ(x), φ(y)〉H.

Then, the data is mapped to Rd by a linear projection M : H → Rd. The embedding

function g : X → Rd is the therefore the composition of the projection M with φ:

g(x) = M(φ(x)).

Because φ may be non-linear, this allows us to learn a non-linear embedding g.

More precisely, we consider M as being comprised of d elements ofH, that is,

M = (ω1, ω2, . . . , ωd) ⊆ H.

The embedding g can thus be expressed as

g(x) = (〈ωp, φ(x)〉H)dp=1 ,

where (·)dp=1 denotes concatenation.
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Note that in general, H may be infinite-dimensional, so directly optimizing M

may not be feasible. However, by appropriately regularizing M , we may invoke the

generalized representer theorem (Schölkopf et al., 2001). Our choice of regularization

is the Hilbert-Schmidt norm of M , which, in this case, reduces to

‖M‖2
HS =

d∑
p=1

〈ωp, ωp〉H.

With this choice of regularization, it follows from the generalized representer theorem

that at an optimum, each ωp must lie in the span of the training data, that is,

ωp =
n∑
i=1

Npiφ(xi), p = 1, . . . , d,

for some real-valued matrix N ∈ Rd×n. If Φ is a matrix representation of X in H (i.e.,

Φi = φ(xi) for xi ∈ X ), then the optimal projection operator M can be expressed as

M = NΦT. (2.3)

We can now reformulate the embedding problem as an optimization over N

rather than M . Using eq. (2.3), the regularization term can be expressed as∥∥M∥∥2

HS
=
〈
N

T
N,K

〉
F
,

where K ∈ Sn+ is the kernel matrix over X associated withH:

Kij ··= 〈φ(xi), φ(xj)〉H = k(xi, xj).

To formulate the distance constraints in terms of N , we first express the embedding g in

terms of N and the kernel function:

g(x) = M(φ(x)) = NΦT(φ(x)) = N (〈Φi, φ(x)〉H)ni=1 = N (k(xi, x))ni=1 = NKx,

where Kx is the column vector formed by evaluating the kernel function k at x against

the training set. The inner product matrix of embedded points can therefore be expressed

as

A = KNTNK,
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which allows to express the distance constraints in terms of N and the kernel matrix K:

(Ki −Kj)
TNTN(Ki −Kj) + 1 ≤ (Kk −K`)

TNTN(Kk −K`).

The embedding problem thus amounts to solving the following optimization problem in

N and ξ:

min
N,ξ≥0

〈
NTN,K

〉
F

+
C

|A|
∑
A

ξijk` (2.4)

s. t.∀(i, j, k, `) ∈ A :

(Ki −Kj)
TNTN(Ki −Kj) + 1 ≤ (Kk −K`)

TNTN(Kk −K`) + ξijk`.

Again, the distance constraints in eq. (2.4) are non-convex due to the differences

of quadratic terms. And, as in the previous section, N only appears in the form of inner

products NTN in eq. (2.4) — both in the constraints, and in the regularization term —

so we can again derive a convex optimization problem by changing variables to

W ··= NTN ∈ Sn+.

The resulting embedding problem is listed as algorithm 2.3, again a semi-definite pro-

gramming problem (SDP), with an objective function and constraints that are linear in

W .

After solving forW , the embedding function g(·) can be recovered by computing

the spectral decomposition W = V ΛV T, and defining Ñ ··= Λ1/2V T. The resulting

embedding function takes the form:

g(x) ··= Λ1/2V TKx.

As in Schultz and Joachims (2004), this formulation can be interpreted as learn-

ing a Mahalanobis distance metric ΦWΦT overH. More generally, we can view this as

a form of kernel learning, where the kernel matrix A is restricted to the set

A ∈
{
KWK

∣∣ W ∈ Sn+
}
. (2.5)
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Algorithm 2.3 Kernel partial order embedding (KPOE)
Input: n objects X , partial order A, kernel matrix K, C > 0

Output: mapping g : X → Rn

min
W,ξ
〈W,K〉F +

C

|A|
∑
A

ξijk`

s. t.∀(i, j, k, `) ∈ A : d(xi, xj) + 1 ≤ d(xk, x`) + ξijk`

0 ≤ ξijk`

W ∈ Sn+

d(xi, xj) ··= (Ki −Kj)
TW (Ki −Kj)

2.3.3 Connection to GNMDS

We conclude this section by drawing a connection between algorithm 2.3 and

the generalized non-metric MDS (GNMDS) algorithm of Agarwal et al. (2007).

First, we observe that the i-th column, Ki, of the kernel matrix K can be ex-

pressed in terms of K and the ith standard basis vector ei:

Ki = Kei.

From this, it follows that distance computations in algorithm 2.3 can be equivalently

expressed as

d(xi, xj) = (Ki −Kj)
TW (Ki −Kj)

= (K(ei − ej))
TW (K(ei − ej))

= (ei − ej)
TKTWK(ei − ej). (2.6)

If we consider the extremal case where K = I , that is, we have no prior feature-based

knowledge of similarity between points, then eq. (2.6) simplifies to

d(xi, xj) = (ei − ej)
TIWI(ei − ej) = Wii +Wjj −Wij −Wji.

Therefore, in this setting, rather than defining a feature transformation, W directly en-

codes the inner products between embedded training points. Similarly, the regularization
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term becomes

〈W,K〉F = 〈W, I〉F = tr(W ).

Minimizing the regularization term can be interpreted as minimizing a convex upper

bound on the rank of W (Boyd and Vandenberghe, 2004), which expresses a preference

for low-dimensional embeddings. Thus, by setting K = I in algorithm 2.3, we directly

recover the GNMDS algorithm.

Note that directly learning inner products between embedded training data points

rather than a feature transformation does not allow a meaningful out-of-sample exten-

sion, to embed unseen data points. On the other hand, by eq. (2.5), it is clear that the

algorithm optimizes over the entire cone of PSD matrices. Thus, if A defines a DAG,

we could exploit the fact that a partial order over distances always allows an embedding

which satisfies all constraints inA (see section 2.A) to eliminate the slack variables from

the program entirely.

2.4 Multiple kernel embedding

In the previous section, we derived an algorithm to learn an optimal projection

from a kernel space H to Rd such that Euclidean distance between embedded points

conforms to perceptual similarity. If, however, the data is heterogeneous in nature,

it may not be realistic to assume that a single feature representation can sufficiently

capture the inherent structure in the data. For example, if the objects in question are

images, it may be natural to encode texture information by one set of features, and color

in another, and it is not immediately clear how to reconcile these two disparate sources

of information into a single kernel space.

However, by encoding each source of information independently by separate

feature spaces H1,H2, . . . ,Hm — equivalently, kernel matrices K1, K2, . . . , Km —

we can formulate a multiple kernel learning algorithm to optimally combine all feature

spaces into a single, unified embedding space. In this section, we will derive a novel,

projection-based approach to multiple-kernel learning and extend algorithm 2.3 to sup-

port heterogeneous data in a principled way.
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2.4.1 Unweighted combination

Let K1, K2, . . . , Km be a set of kernel matrices, each with a corresponding fea-

ture map φp and RKHS Hp, for p ∈ 1, . . . ,m. One natural way to combine the kernels

is to look at the product space, which is formed by concatenating the feature maps:

φ(xi) ··=
(
φ1(xi), φ

2(xi), . . . , φ
m(xi)

)
= (φp(xi))

m
p=1.

Inner products can be computed in this space by summing across each feature map:

〈φ(xi), φ(xj)〉 ··=
m∑
p=1

〈φp(xi), φp(xj)〉Hp .

resulting in the sum-kernel—also known as the average kernel or product space kernel.

The corresponding kernel matrix can be conveniently represented as the unweighted

sum of the base kernel matrices:

K̂ ··=
m∑
p=1

Kp. (2.7)

Since K̂ is a valid kernel matrix itself, we could use K̂ as input for algorithm 2.3.

As a result, the algorithm would learn a kernel from the family

K1 ··=

{(
m∑
p=1

Kp

)
W

(
m∑
p=1

Kp

) ∣∣∣∣∣ W ∈ Sn+

}

=

{
m∑

p,q=1

KpWKq

∣∣∣∣∣ W ∈ Sn+

}
.

2.4.2 Weighted combination

Note that K1 treats each kernel equally; it is therefore impossible to distinguish

good features (i.e., those which can be transformed to best fit A) from bad features,

and as a result, the quality of the resulting embedding may be degraded. To combat this

phenomenon, it is common to learn a scheme for weighting the kernels in a way which is

optimal for a particular task. The most common approach to combining the base kernels

is to take a positive-weighted sum

K̂ ··=
m∑
p=1

µpK
p µ ∈ Rm

+ ,
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where the weights µp are learned in conjunction with a predictor (Lanckriet et al., 2004,

Sonnenburg et al., 2006, Bach, 2008, Cortes et al., 2009). Equivalently, this can be

viewed as learning a feature map

φ(xi) ··=
(√

µpφ
p(xi)

)m
p=1

,

where each base feature map has been scaled by the corresponding weight√µp.
Applying this reasoning to learning an embedding that conforms to perceptual

similarity, one might consider a two-stage approach to parameterizing the embedding

(fig. 2.3a): first construct a weighted kernel combination, and then project from the

combined kernel space. Lin et al. (2009) formulate a dimensionality reduction algorithm

in this way. In the present setting, this would be achieved by simultaneously optimizing

W and µp to choose an inner product matrix A from the set

K2 ··=

{(
m∑
p=1

µpK
p

)
W

(
m∑
p=1

µpK
p

) ∣∣∣∣∣ W ∈ Sn+, µ ∈ Rm
+

}

=

{
m∑

p,q=1

µpK
pWµqK

q

∣∣∣∣∣ W ∈ Sn+, µ ∈ Rm
+

}
.

The corresponding distance constraints, however, contain differences of terms cubic in

the optimization variables W and µp:∑
p,q

(
Kp
i −K

p
j

)T
µpWµq

(
Kq
i −K

q
j

)
+ 1 ≤

∑
p,q

(Kp
k −K

p
` )T µpWµq (Kq

k −K
q
` ) ,

and are therefore non-convex and difficult to optimize. Even simplifying the class by

removing cross-terms, that is, restricting A to the form

K3 ··=

{
m∑
p=1

µ2
pK

pWKp

∣∣∣∣∣ W ∈ Sn+, µ ∈ Rm
+

}
,

still leads to a non-convex problem, due to the difference of positive quadratic terms

introduced by distance calculations:
m∑
p=1

(
Kp
i −K

p
j

)T
µ2
pW

(
µpK

p
i −K

p
j

)
+ 1 ≤

m∑
p=1

(Kp
k −K

p
` )T µ2

pW (µpK
p
k −K

p
` ) .

However, a more subtle problem with this formulation lies in the assumption that a

single weight can characterize the contribution of a kernel to the optimal embedding. In
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general, different kernels may be more or less informative on different subsets of X or

different regions of the corresponding feature space. Constraining the embedding to a

single metric W with a single weight µp for each kernel may be too restrictive to take

advantage of this phenomenon.

2.4.3 Concatenated projection

We now return to the original intuition behind eq. (2.7). The sum-kernel repre-

sents the inner product between points in the space formed by concatenating the base

feature maps φp. The sets K2 and K3 characterize projections of the weighted combina-

tion space, and turn out to not be amenable to efficient optimization (fig. 2.3a). This can

be seen as a consequence of prematurely combining kernels prior to projection.

Rather than projecting the (weighted) concatenation of φp(·), we could alterna-

tively concatenate learned projections Mp(φp(·)), as illustrated by fig. 2.3b. Intuitively,

by defining the embedding as the concatenation of m different projections, we allow the

algorithm to learn an ensemble of projections, each tailored to its corresponding domain

space and jointly optimized to produce an optimal space. By contrast, the previously

discussed formulations apply essentially the same projection to each (weighted) feature

space, and are thus much less flexible than our proposed approach. Mathematically, an

embedding function of this form can be expressed as the concatenation

g(x) ··= (Mp (φp(x)))mp=1 .

Now, given this characterization of the embedding function, we can adapt algo-

rithm 2.3 to optimize over multiple kernels. As in the single-kernel case, we introduce

regularization terms for each projection operator Mp

m∑
p=1

‖Mp‖2
HS

to the objective function. Again, by invoking the representer theorem for each Mp, it

follows that

M
p

= N
p

(Φp)T ,

for some N
p ∈ Rd×n, which allows to reformulate the embedding problem as a joint

optimization over Np, p = 1, . . . ,m rather than Mp, p = 1, . . . ,m. Indeed, for optimal
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M
p
, the regularization terms can be expressed as

m∑
p=1

‖Mp‖2
HS =

m∑
p=1

〈
N
pT
N
p
, Kp

〉
F
. (2.8)

The embedding function can now be rewritten as

g(x) = (Mp (φp(x)))mp=1 = (NpKp
x)mp=1 , (2.9)

and the inner products between embedded points take the form:

Aij = 〈g(xi), g(xj)〉 =
m∑
p=1

(NpKp
i )T
(
NpKp

j

)
=

m∑
p=1

(Kp
i )T(Np)T(Np)(Kp

j ).

Similarly, squared Euclidean distance also decomposes by kernel:

‖g(xi)− g(xj)‖2 =
m∑
p=1

(
Kp
i −K

p
j

)T
(Np)T(Np)

(
Kp
i −K

p
j

)
. (2.10)

Finally, since the matrices Np, p = 1, . . . ,m only appear in the form of in-

ner products in eqs. (2.8) and (2.10), we may instead optimize over PSD matrices

W p ··= (Np)T(Np). This renders the regularization terms (eq. (2.8)) and distances

(eq. (2.10)) linear in the optimization variables W p. Extending algorithm 2.3 to this

parameterization of g(·) therefore results in an SDP, which is listed as algorithm 2.4.

To solve the SDP, we implemented a gradient descent solver, which is described in sec-

tion 2.B.

The class of kernels over which algorithm 2.4 optimizes can be expressed simply

as the set

K4 ··=

{
m∑
p=1

KpW pKp

∣∣∣∣∣ ∀p, W p ∈ Sn+

}
.

Note that K4 contains K3 as a special case when all W p are positive scalar multiples of

each-other. However, K4 leads to a convex optimization problem, where K3 does not.

Table 2.1 lists the block-matrix formulations of each of the kernel combination

rules described in this section. It is worth noting that it is certainly valid to first form the

unweighted combination kernel K̂ and then use K1 (algorithm 2.3) to learn an optimal
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...

(a) Weighted combination (K2)

...

(b) Concatenated projection (K4)

Figure 2.3: Two variants of multiple-kernel embedding. (a) x ∈ X is mapped into m

feature spaces via φ1, φ2, . . . , φm, which are scaled by µ1, µ2, . . . , µm to form H∗ and

finally projected via M . (b) x is first mapped into each kernel’s feature space and then

its images are directly projected via the corresponding projections Mp.

projection of the product space. However, as we will demonstrate in section 2.5, our

proposed multiple-kernel formulation (K4) outperforms the simple unweighted combi-

nation rule in practice.

2.4.4 Diagonal learning

The MKPOE optimization is formulated as a semi-definite program over m dif-

ferent n×nmatricesW p — or, as shown in table 2.1, a singlemn×mn PSD matrix with

a block-diagonal sparsity structure. Scaling this approach to large data sets can become

problematic, as they require optimizing over multiple high-dimensional PSD matrices.

To cope with larger problems, the optimization problem can be refined to con-

strain each W p to the set of diagonal matrices. If W p are all diagonal, positive semi-

definiteness is equivalent to non-negativity of the diagonal values (since they are also

the eigenvalues of the matrix). This allows the constraints W p ∈ Sn+ to be replaced

by linear constraints diag(W p) ∈ Rn
+, and the resulting optimization problem is a linear

program (LP), rather than an SDP. This modification reduces the flexibility of the model,

but leads to a much more efficient optimization procedure.
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Table 2.1: Block-matrix formulations of metric learning for multiple-kernel formula-

tions (K1–K4). Each W p is taken to be positive semi-definite. Note that all sets are

equal when there is only one base kernel.

Kernel class Learned kernel matrix

K1 =

{∑
p,q

KpWKq

}
[K1 +K2 + · · ·+Km] [W ] [K1 +K2 + · · ·+Km]

K2 =

{∑
p,q

µpµqK
pWKq

} 
K1

K2

...

Km


T

µ2
1W µ1µ2W · · · µ1µmW

µ2µ1W µ2
2W · · · ...

... . . .

µmµ1W µ2
mW




K1

K2

...

Km



K3 =

{∑
p

µ2
pK

pWKp

} 
K1

K2

...

Km


T

µ2
1W 0 · · · 0

0 µ2
2W · · · ...

... . . .

0 µ2
mW




K1

K2

...

Km



K4 =

{∑
p

KpW pKp

} 
K1

K2

...

Km


T

W 1 0 · · · 0

0 W 2 · · · ...
... . . .

0 Wm




K1

K2

...

Km
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Algorithm 2.4 Multiple kernel partial order embedding (MKPOE)

Input: n objects X , partial order A, m kernel matrices K1, K2, . . . , Km, C > 0

Output: mapping g : X → Rmn

min
W p,ξ

m∑
p=1

〈W p, Kp〉F +
C

|A|
∑
A

ξijk`

s. t.∀(i, j, k, `) ∈ A : d(xi, xj) + 1 ≤ d(xk, x`) + ξijk`

0 ≤ ξijk`

∀p ∈ { 1, 2, · · · ,m } : W p ∈ Sn+

d(xi, xj) ··=
m∑
p=1

(
Kp
i −K

p
j

)T
W p

(
Kp
i −K

p
j

)

More specifically, our implementation of algorithm 2.4 operates by alternating

sub-gradient descent on W p and projection onto the feasible set Sn+ (see section 2.B

for details). For full matrices, this projection is accomplished by computing the spectral

decomposition of eachW p, and thresholding the eigenvalues at 0. For diagonal matrices,

this projection is accomplished simply by

W p
ii 7→ max { 0,W p

ii } ,

which can be computed in O(mn) time, compared to the O(mn3) time required to

compute m spectral decompositions.

RestrictingW p to be diagonal not only simplifies the problem to linear program-

ming, but carries the added interpretation of weighting the contribution of each (kernel,

training point) pair in the construction of the embedding. A large value at W p
ii corre-

sponds to point i being a landmark for the features encoded in Kp. Note that each of the

formulations listed in table 2.1 has a corresponding diagonal variant, however, as in the

full matrix case, only K1 and K4 lead to convex optimization problems.
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2.5 Experiments

To evaluate our framework for learning multi-modal similarity, we first test the

multiple kernel learning formulation on a simple toy taxonomy data set, and then on a

real-world data set of musical perceptual similarity measurements.

2.5.1 Toy experiment: taxonomy embedding

For our first experiment, we generated a toy data set from the Amsterdam Library

of Object Images (ALOI) data set (Geusebroek et al., 2005). ALOI consists of RGB

images of 1000 classes of objects against a black background. Each class corresponds

to a single object, and examples are provided of the object under varying degrees of

out-of-plane rotation.

In our experiment, we first selected 10 object classes, and from each class, sam-

pled 20 examples. We then constructed an artificial taxonomy over the label set, as

depicted in fig. 2.4. Using the taxonomy, we synthesized relative comparisons to span

subtrees via their least common ancestor. For example,

(Lemon#1, Lemon#2, Lemon#1, P ear#1),

(Lemon#1, P ear#, 1, Lemon#1, Sneaker#1),

and so on. These comparisons are consistent and therefore can be represented as a

directed acyclic graph. They are generated so as to avoid redundant, transitive edges in

the graph.

For features, we generated five kernel matrices. The first is a simple linear ker-

nel over the gray-scale intensity values of the images, which, roughly speaking, com-

pares objects by shape. The other four are Gaussian kernels over histograms in the

(background-subtracted) red, green, blue, and intensity channels, and these kernels com-

pare objects based on their color or intensity distributions.

We augment this set of kernels with five “noise” kernels, each of which was

generated by sampling random points from the unit sphere in R3 and applying the linear

kernel.

The data was partitioned into five 80/20 training and test set splits. To tune

C, we further split the training set for 5-fold cross-validation, and swept over C ∈
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Figure 2.4: The label taxonomy for the experiment in section 2.5.1.

{ 10−2, 10−1, . . . , 106 }. For each fold, we learned a diagonally-constrained embedding

with algorithm 2.4, using the subset of relative comparisons (i, j, k, `) with i, j, k and

` restricted to the training set. After learning the embedding, the held out data (val-

idation or test) was mapped into the space, and the accuracy of the embedding was

determined by counting the fraction of correctly predicted relative comparisons. In the

validation and test sets, comparisons were processed to only include comparisons of the

form (i, j, i, k) where i belongs to the validation (or test) set, and j and k belong to the

training set.

We repeat this experiment for each base kernel individually (that is, optimizing

over K1 with a single base kernel), as well as the unweighted sum kernel (K1 with all

base kernels), and finally MKPOE (K4 with all base kernels). The results are averaged

over all training/test splits, and collected in fig. 2.5. For comparison purposes, we in-

clude the prediction accuracy achieved by computing distances in each kernel’s native

space before learning. In each case, the optimized space indeed achieves higher accu-

racy than the corresponding native space. (Of course, the random noise kernels still

predict randomly after optimization.)

As illustrated in fig. 2.5, taking the unweighted combination of kernels signifi-

cantly degrades performance (relative to the best kernel) both in the native space (0.718

accuracy versus 0.862 for the linear kernel) and the optimized sum-kernel space (0.861
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Figure 2.5: Test accuracy for the taxonomy embedding experiment: the fraction of

correctly predicted comparisons in the native space, and in the optimized space produced

by KPOE (single kernel) and MKPOE (multiple kernel). Error bars correspond to one

standard deviation across folds.

accuracy for the sum versus 0.951 for the linear kernel), that is, the unweighted sum ker-

nel optimized by algorithm 2.3. However, MKPOE (K4) correctly identifies and omits

the random noise kernels by assigning them negligible weight, and achieves higher ac-

curacy (0.984) than any of the single kernels (0.951 for the linear kernel, after learning).

2.5.2 Musical artist similarity

To test our framework on a real data set, we applied the MKPOE algorithm to

the task of learning a similarity function between musical artists. The artist similarity

problem is motivated by several real-world applications, including recommendation and

playlist-generation for online radio. Because artists may be represented by a wide vari-

ety of different features (e.g., tags, acoustic features, social data), such applications can

benefit greatly from an optimally integrated similarity metric.

The training data is derived from the aset400 corpus of Ellis et al. (2002), which

consists of 412 popular musicians and 16385 relative comparisons of the form (i, j, i, k).

Relative comparisons were acquired from human test subjects through a web survey;
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subjects were presented with a query artist (i), and asked to choose what they believe to

be the most similar artist (j) from a list of 10 candidates. From each single response,

9 relative comparisons are synthesized, indicating that j is more similar to i than the

remaining 9 artists (k) which were not chosen.

Our experiments here replicate and extend previous work on this data set (McFee

and Lanckriet, 2009a). In the remainder of this section, we will first give an overview

of the various types of features used to characterize each artist in section 2.5.2. We

will then discuss the experimental procedure in more detail in section 2.5.2. The MKL

embedding results are presented in section 2.5.2, and are followed by an experiment

detailing the efficacy of our constraint graph processing approach in section 2.5.2.

Features

We construct five base kernels over the data, incorporating acoustic, semantic,

and social views of the artists.

MFCC for each artist, we collected between 1 and 10 songs (mean 4). For each song,

we extracted a short clip consisting of 10000 half-overlapping 23ms windows.

For each window, we computed the first 13 Mel Frequency Cepstral Coefficients

(MFCCs) (Davis and Mermelstein, 1990), as well as their first and second instan-

taneous derivatives. This results in a sequence of 39-dimensional vectors (delta-

MFCCs) for each song. Each artist i was then summarized by a Gaussian mix-

ture model (GMM) pi over delta-MFCCs extracted from the corresponding songs.

Each GMM has 8 components and diagonal covariance matrices. Finally, the ker-

nel between artists i and j is the probability product kernel (Jebara et al., 2004)

between their corresponding delta-MFCC distributions pi, pj:

Kmfcc
ij
··=
∫ √

pi(x)pj(x) dx.

Auto-tags (AT) Using the MFCC features described above, we applied the automatic

tagging algorithm of Turnbull et al. (2008), which for each song yields a multi-

nomial distribution over a set T of 149 musically-relevant tag words (auto-tags).

Artist-level tag distributions qi were formed by averaging model parameters (i.e.,
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tag probabilities) across all of the songs of artist i. The kernel between artists i

and j for auto-tags is a radial basis function applied to the χ2-distance between

the multinomial distributions qi and qj:

Kat
ij
··= exp

(
−σ
∑
t∈T

(qi(t)− qj(t))2

qi(t) + qj(t)

)
.

In these experiments, we fixed σ = 256.

Social tags (ST) For each artist, we collected the top 100 most frequently used tag

words from Last.fm,2 a social music website which allows users to label songs

or artists with arbitrary tag words or social tags. After stemming and stop-word

removal, this results in a vocabulary of 7737 tag words. Each artist is then repre-

sented by a bag-of-words vector in R7737, and processed by TF-IDF. The kernel

between artists for social tags is the cosine similarity (linear kernel) between TF-

IDF vectors.

Biography (Bio) Last.fm also provides textual descriptions of artists in the form of

user-contributed biographies. We collected biographies for each artist in aset400,

and after stemming and stop-word removal, we arrived at a vocabulary of 16753

biography words. As with social tags, the kernel between artists is the cosine

similarity between TF-IDF bag-of-words vectors.

Collaborative filter (CF) Celma (2010) collected collaborative filter data from Last.fm

in the form of a bipartite graph over users and artists, where each user is associ-

ated with the artists in her listening history. We filtered this data down to include

only the aset400 artists, of which all but 5 were found in the collaborative filtering

graph. The resulting graph has 336527 users and 407 artists, and is equivalently

represented by a binary matrix F where each row u corresponds to a user, and

each column i corresponds to an artist. Fui is 1 if we observe a user-artist associ-

ation, and 0 otherwise. The kernel between artists in this view is the cosine of the

angle between corresponding columns in the matrix, which can be interpreted as

counting the amount of overlap between the sets of users listening to each artist

2Last.fm can be found at http://last.fm.

http://last.fm
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and normalizing for overall artist popularity. For the 5 artists not found in the

graph, we fill in the corresponding rows and columns of the kernel matrix with

the identity matrix.

Experimental procedure

The data was randomly partitioned into ten 90/10 training/test splits. Given the

inherent ambiguity in the task, and format of the survey, there is a great deal of conflict-

ing information in the survey responses. To obtain a more accurate and internally con-

sistent set of training comparisons, directly contradictory comparisons (e.g., (i, j, i, k)

and (i, k, i, j)) were removed from both the training and test sets. Each training set was

further cleaned by finding an acyclic subset of comparisons and taking its transitive re-

duction, resulting in a minimal partial order. (No further processing was performed on

test comparisons.)

After training, test artists were mapped into the learned space (by eq. (2.9)), and

accuracy was measured by counting the number of measurements (i, j, i, k) correctly

predicted by distance in the learned space, where i belongs to the test set, and j, k

belong to the training set.

For each experiment, C is chosen from { 10−2, 10−1, . . . , 107 } by holding out

30% of the training constraints for validation. (Validation splits are generated from

the unprocessed training set, and the remaining training constraints are processed as

described above.) After finding the best-performing C, the embedding is trained on the

full (processed) training set.

Embedding results

For each base kernel, we evaluate the test-set performance in the native space

(i.e., by distances calculated directly from the entries of the kernel matrix), and by

learned metrics, both diagonal and full (optimizing over K1 with a single base kernel).

Figure 2.6 illustrates the results.

We then repeated the experiment by examining different groupings of base ker-

nels: acoustic (MFCC and Auto-tags), semantic (Social tags and Bio), social (Collabora-

tive filter), and combinations of the groups. The different sets of kernels were combined
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Figure 2.6: aset400 embedding results for each base kernel. Accuracy is computed in

each kernel’s native feature space, and in the space produced by algorithm 2.3 (K1 with a

single kernel) with either the diagonal or full-matrix formulation. Error bars correspond

to one standard deviation across training/test splits.

by algorithm 2.4 (optimizing over K4). The results are listed in fig. 2.7.

In all cases, MKPOE improves over the unweighted combination of base ker-

nels. Moreover, many combinations outperform the single best kernel (ST, 0.777± 0.02

after optimization), and the algorithm is generally robust in the presence of poorly-

performing kernels (MFCC and AT). Note that the poor performance of MFCC and AT

kernels may be expected, as they derive from song-level rather than artist-level features,

whereas ST provides high-level semantic descriptions which are generally more homo-

geneous across the songs of an artist, and Bio and CF are directly constructed at the

artist level. For comparison purposes, we trained metrics on the sum kernel with K1 (al-

gorithm 2.3), resulting in accuracies of 0.676± 0.05 (diagonal) and 0.765± 0.03 (full).

The proposed approach (algorithm 2.4) applied to all kernels results in 0.754 ± 0.03

(diagonal), and 0.795± 0.02 (full).

Figure 2.8 illustrates the weights learned by algorithm 2.4 using all five kernels

and diagonally-constrained W p matrices. Note that the learned metrics are both sparse

(many 0 weights) and non-uniform across different kernels. In particular, the (lowest-

performing) MFCC kernel is eliminated by the algorithm, and the majority of the weight
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Figure 2.7: aset400 embedding results with multiple-kernel embedding: the learned

metrics are optimized over K4 by algorithm 2.4. Native corresponds to distances calcu-

lated according to the unweighted sum of base kernels.

is assigned to the (highest-performing) social tag (ST) kernel.

A t-SNE (van der Maaten and Hinton, 2008) visualization of the space produced

by MKPOE is illustrated in fig. 2.9. The embedding captures a great deal of high-level

genre structure: for example, the classic rock and metal genres lie at the opposite end of

the space from pop and hip-hop.

Graph processing results

To evaluate the effects of processing the constraint set for consistency and redun-

dancy, we repeat the experiment of the previous section with different levels of process-

ing applied to A. Here, we focus on the Biography kernel, since it exhibits the largest

gap in performance between the native and learned spaces.

As a baseline, we first consider the full set of similarity measurements as pro-

vided by human judgements, including all inconsistencies. To first deal with what appear

to be the most egregious inconsistencies, we prune all directly inconsistent training mea-

surements; that is, whenever (i, j, i, k) and (i, k, i, j) both appear, both are removed.3

3A more sophisticated approach could be used here, for example, majority voting, provided there is
sufficient over-sampling of comparisons. The aset400 data lacks sufficient over-sampling for majority
voting, so we default to this relatively simple approach.
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Figure 2.8: The weighting learned by algorithm 2.4 using all five kernels and diagonal

W p. Each bar plot contains the diagonal of the corresponding kernel’s learned metric.

The horizontal axis corresponds to the index in the training set, and the vertical axis

corresponds to the learned weight in each kernel space.

Finally, we consider the fully processed case by finding a maximal consistent subset

(partial order) of A and removing all redundancies. Table 2.2 lists the number of train-

ing constraints retained by each step of processing (averaged over the random splits).

Using each of these variants of the training set, we test the embedding algorithm

with both diagonal and full-matrix formulations. The results are presented in table 2.2.

Each level of graph processing results in a significant reduction in the number of train-

ing comparisons (and, therefore, computational overhead of algorithm 2.3), while not

degrading the quality of the resulting embedding.

Finally, to test the sensitivity of the algorithm to randomness in the acyclic sub-

graph routine, we repeated the above experiment ten times, each with a different random

maximal acyclic constraint set and the full matrix formulation of the algorithm. As de-

picted in fig. 2.10, the randomness in the constraint generation has little impact on the

accuracy of the learned metric: the largest standard deviation is 0.007 (split #7).
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Figure 2.9: t-SNE visualizations of an embedding of aset400 produced by MKPOE.

The embedding is constructed by optimizing over K4 with all five base kernels. The

two clusters shown roughly correspond to (a) pop/hip-hop, and (b) classic rock/metal

genres. Out-of-sample points are indicated by a red +.
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Table 2.2: aset400 embedding results (Biography kernel) for three refinements of the

constraint set. Full includes all constraints with no pruning. Length-2 removes all

length-2 cycles (i.e., (i, j, k, `) and (k, `, i, j)). Processed finds a maximal consistent

subset, and removes redundant constraints.

Accuracy

A |A| (Avg.) Diagonal Full

Full 8951.3 0.622±0.05 0.715±0.04

Length-2 6684.5 0.630±0.05 0.714±0.04

Processed 4814.5 0.628±0.05 0.716±0.04
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Figure 2.10: Accuracy of the learned embedding for each training/test split, averaged

over ten trials with random maximal acyclic constraint subgraphs. Error bars correspond

to one standard deviation.

2.6 Hardness of dimensionality reduction

The algorithms given in section 2.3 and section 2.4 attempt to produce low-

dimensional solutions by regularizing W , which can be seen as a convex approximation

to the rank of the embedding. In general, because rank constraints are not convex,

convex optimization techniques cannot efficiently minimize dimensionality. This does

not necessarily imply other techniques could not work. So, it is natural to ask if exact

solutions of minimal dimensionality can be found efficiently, particularly in the multi-

dimensional scaling scenario, that is, when K = I (section 2.3.3).

As a special case, one may wonder if any instance (X ,A) can be satisfied in

R1. As fig. 2.11 demonstrates, not all instances can be realized in one dimension. Even
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more, we show that it is NP-complete to decide if a given A can be satisfied in R1.

Given an embedding, it can be verified in polynomial time whether A is satisfied or

not by simply computing the distances between all pairs and checking each comparison

in A, so the decision problem is in NP. It remains to show that the R1 partial order

embedding problem (hereafter referred to as 1-POE) is NP-hard.4 We reduce from the

Betweenness problem (Opatrny, 1979), which is known to be NP-complete.

Definition 2.1 (Betweenness). Given a finite set S and a collection T of ordered triples

(a, b, c) of distinct elements from S, decide if there exists an injection f : S → Z such

that for each (a, b, c) ∈ T , either f(a) < f(b) < f(c) or f(c) < f(b) < f(a).

Theorem 2.1. 1-POE is NP-hard.

Proof. Let (S, T ) be an instance of Betweenness. Let X ··= S, and for each (a, b, c) ∈
T , introduce constraints (a, b, a, c) and (b, c, a, c) to A. Since Euclidean distance in

R1 is simply line distance, these constraints exactly encode the constraint that g(b) lies

between g(a) and g(c).

If a solution g to the constructed 1-POE problem exists, it can be used to con-

struct a solution f to Betweenness by sorting g(·) in ascending order. If a solution

f exists to Betweenness, then g = f is also a solution to 1-POE, since Z ⊂ R1

and all constraints A are satisfied. Therefore, (S, T ) ∈ Betweenness if and only if

(X ,A) ∈ 1-POE. Since Betweenness is NP-hard, 1-POE is NP-hard as well.

Since 1-POE can be reduced to the general optimization problem of finding an

embedding of minimal dimensionality, we conclude that dimensionality reduction sub-

ject to partial order constraints is also NP-hard.

2.7 Conclusion

We have demonstrated a novel method for optimally integrating heterogeneous

data to conform to measurements of perceptual similarity. By interpreting a collection

of relative similarity comparisons as a directed graph over pairs, we are able to apply

4 We use the real numbers R1 only for notational convenience, and should be understood as referring
to computable numbers here.
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Figure 2.11: (a) The vertices of a square in R2. (b) The partial order over distances

induced by the square: each side is less than each diagonal. This constraint set cannot

be satisfied in R1.

graph-theoretic techniques to isolate and prune inconsistencies in the training set and

reduce computational overhead by eliminating redundant constraints in the optimization

procedure.

Our multiple-kernel formulation offers a principled way to integrate multiple

feature modalities into a unified similarity space. Our formulation carries the intuitive

geometric interpretation of concatenated projections, and results in a semidefinite pro-

gram. By incorporating diagonal constraints as well, we are able to reduce the compu-

tational complexity of the algorithm, and learn a model which is both flexible — only

using kernels in the portions of the space where they are informative — and interpretable

— each diagonal weight corresponds to the contribution to the optimized space due to a

single point within a single feature space.
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Algorithm 2.5 Naïve total order construction
Input: objects X , partial order A
Output: symmetric dissimilarity matrix D ∈ Rn×n

1: for each i in 1 . . . n do

2: Dii ← 0 � Distance to self is 0

3: end for

4: for each (k, `) in topological order do

5: if in-degree(k, `) = 0 then

6: Dk` ← D`k ← 1

7: else

8: Dk` ← D`k ← max
i,j:(i,j,k,`)∈A

Dij + 1

9: end if

10: end for

2.A Embedding partial orders

In this appendix, we prove that any set X with a partial order over distances A
can be embedded into Rn while satisfying all distance comparisons.

In the special case where A is a total ordering over all pairs (i.e., a chain graph),

the problem reduces to non-metric multidimensional scaling (Kruskal, 1964), and a

constraint-satisfying embedding can always be found by the constant-shift embedding

algorithm of Roth et al. (2003). In general, A is not a total order, but a A-respecting

embedding can always be produced by reducing the partial order to a (weak) total order

by topologically sorting the graph (see algorithm 2.5).

Let D be the dissimilarity matrix produced by algorithm 2.5 on (X ,A). An em-

bedding can be found by first applying classical multidimensional scaling (MDS) (Cox

and Cox, 1994) to D:

A = −1

2
HDH,

where H ··= I − 1
n
11T is the n× n centering matrix, and 1 is a vector of 1s. Shifting

the spectrum of A yields

Â ··= A− λn(A)I ∈ Sn+,

where λn(A) is the minimum eigenvalue of A. The embedding g can be found by
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decomposing Â = V Λ̂V T, so that g(xi) is the ith column of Λ̂
1/2
V T; this is the solution

constructed by the constant-shift embedding non-metric MDS algorithm of Roth et al.

(2003).

Applying this transformation to A affects distances by

‖g(xi)− g(xj)‖2 = Âii + Âjj − 2Âij = (Aii − λn) + (Ajj − λn)− 2Aij

= Aii + Ajj − 2Aij − 2λn.

Since adding a constant (−2λn) preserves the ordering of distances, the total order (and

henceA) is preserved by this transformation. Thus, for any instance (X ,A), an embed-

ding can be found in Rn−1.

2.B Solver

Our implementation of algorithm 2.4 is based on projected sub-gradient descent.

To simplify exposition, we show the derivation of the single-kernel SDP version of

algorithm 2.3 with unit margins. (It is straightforward to extend the derivation to the

multiple-kernel and LP settings.)

We first observe that a kernel matrix column Ki can be expressed as KTei where

ei is the ith standard basis vector. We can then denote the distance calculations in terms

of Frobenius inner products:

d(xi, xj) = (Ki −Kj)
TW (Ki −Kj)

= (ei − ej)
TKWK(ei − ej)

= tr(KWK(ei − ej)(ei − ej)
T) = tr(WKEijK)

= 〈W,KEijK〉F ,

where Eij = (ei − ej)(ei − ej)
T.

A margin constraint (i, j, k, `) can now be expressed as:

d(xi, xj) + 1 ≤ d(xk, x`) + ξijk`

⇒ 〈W,KEijK〉F + 1 ≤ 〈W,KEk`K〉F + ξijk`

⇒ ξijk` ≥ 1 + 〈W,K(Eij − Ek`)K〉F .
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The slack variables ξijk` can be eliminated from the program by rewriting the

objective in terms of the constraints:

min
W∈Sn+

〈W,K〉F +
C

|A|
∑
A

h
(
1 + 〈W,K(Eij − Ek`)K〉F

)
︸ ︷︷ ︸

f(W )

,

where

h(x) ··= x · Jx > 0K

is the hinge loss.

A sub-gradient∇· f(W ) ∈ ∂f(W ) has two components: one due to regulariza-

tion, and one due to the hinge loss. The gradient due to regularization is

∇W 〈W,K〉F = K.

The loss term decomposes linearly, and for each (i, j, k, `) ∈ A, a sub-gradient is

∇·W h (1 + d(xi, xj)− d(xk, x`)) =

0 d(xi, xj) + 1 ≤ d(xk, x`)

K(Eij − Ek`)K otherwise.
(2.11)

Rather than computing each sub-gradient direction independently, we observe that each

violated constraint contributes a matrix of the form K(Eij − Ek`)K. By linearity, we

can collect all (Eij −Ek`) terms and then pre- and post-multiply by K to obtain a more

efficient calculation of∇·f :

∇·f(W ) = K +
C

|A|
K

 ∑
(i,j,k,`)∈A′(W )

Eij − Ek`

K ∈ ∂f,

where A′(W ) ⊆ A is the set of constraints violated by W .

After each step W 7→ W − α ∇· f(W ), the updated W is projected back onto

the set of positive semidefinite matrices by computing its spectral decomposition and

thresholding the eigenvalues by λi 7→ max(0, λi).

To extend this derivation to the multiple-kernel case (algorithm 2.4), we can

define

d(xi, xj) ··=
m∑
p=1

dp(xi, xj),
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and exploit linearity to compute each partial sub-gradient∇·W p f(W p) independently.

For the diagonally-constrained case, it suffices to substitute

K(Eij − Ek`)K 7→ diag(K(Eij − Ek`)K)

in eq. (2.11). After each step in the diagonal case, the PSD constraint on W can be

enforced by the projection Wii 7→ max(0,Wii).

2.C Relationship to AUC

In this appendix, we formalize the connection between partial orders over dis-

tances and query-by-example ranking. Recall that algorithm 2.2 minimizes the loss
1/|A|

∑
A ξijk`, where each ξijk` ≥ 0 is a slack variable associated with a margin con-

straint

d(i, j) + 1 ≤ d(k, `) + ξijk`.

As noted by Schultz and Joachims (2004), the fraction of relative comparisons

satisfied by an embedding g is closely related to the area under the receiver operating

characteristic curve (AUC). To make this connection precise, consider the following

information retrieval problem. For each point xi ∈ X , we are given a partition of

X \ { i }:

X+
i = { xj | xj ∈ X relevant for xi } , and

X−i = { xk | xk ∈ X irrelevant for xi } .

If we embed each xi ∈ X into a Euclidean space, we can then rank the rest of the

data X \ { xi } by increasing distance from xi. Truncating this ranked list at the top τ

elements (i.e., closest τ points to xi) will return a certain fraction of relevant points (true

positives), and irrelevant points (false positives). Averaging over all values of τ defines

the familiar AUC score, which can be compactly expressed as:

AUC(xi|g) =
1

|X+
i | · |X−i |

∑
(xj ,xk)∈X+

i ×X
−
i

J‖g(xi)− g(xj)‖ < ‖g(xi)− g(xk)‖K .

Intuitively, AUC can be interpreted as an average over all pairs (xj, xk) ∈ X+
i ×

X−i of the number of times xi was mapped closer to a relevant point xj than an irrelevant
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point xk. This in turn can be conveniently expressed by a set of relative comparisons for

each xi ∈ X :

Ai ··=
{

(i, j, i, k)
∣∣ (xj, xk) ∈ X+

i ×X−i
}
, A ··=

⋃
xi∈X

Ai.

An embedding which satisfies a complete set of constraints of this form will receive an

AUC score of 1, since every relevant point must be closer to xi than every irrelevant

point.

Now, returning to the more general setting, we do not assume binary relevance

scores or complete observations of relevance for all pairs of points. However, we can

define the generalized AUC score (GAUC) as simply the average number of correctly

ordered pairs (equivalently, satisfied constraints) given a set of relative comparisons:

GAUC(g) =
1

|A|
∑

(i,j,k,`)∈A

J‖g(xi)− g(xj)‖ < ‖g(xk)− g(x`)‖K .

Like AUC, GAUC is bounded between 0 and 1, and the two scores coincide exactly in

the previously described ranking problem. A corresponding loss function can be defined

by reversing the order of the inequality, that is,

LGAUC(g) =
1

|A|
∑

(i,j,k,`)∈A

J‖g(xi)− g(xj)‖ ≥ ‖g(xk)− g(x`)‖K .

Note that LGAUC takes the form of a sum over indicators, and can be interpreted as

the average 0/1-loss over A. This function is clearly not convex in g, and is therefore

difficult to optimize. Algorithms 2.2 to 2.4 instead optimize a convex upper bound on

LGAUC by replacing indicators by the hinge loss.

As in SVM, this is accomplished by introducing a unit margin and slack variable

ξijk` for each (i, j, k, `) ∈ A, and minimizing 1/|A|
∑
A ξijk`.



Chapter 3

Metric learning to rank

3.1 Introduction

In many machine learning tasks, good performance hinges upon the definition

of similarity between objects. Although Euclidean distance on raw features provides a

simple and mathematically convenient metric, there is often no reason to assume that it is

optimal for the task at hand. Consequently, many researchers have developed algorithms

to automatically learn distance metrics in supervised settings.

With few exceptions, these metric learning algorithms all follow the same guid-

ing principle: a point’s good neighbors should lie closer than its bad neighbors. The

exact definitions of good and bad vary across problem settings, but typically they de-

rive from some combination of feature proximity and label agreement. In keeping with

this principle, metric learning algorithms are often evaluated by testing the accuracy of

labels predicted by k-nearest neighbors on held out data.

At a high level, we consider a metric good if, when given a test point q, sorting

the training set by increasing distance from q results in good neighbors at the front of

the list, and bad neighbors at the end. Viewed in this light, we can cast nearest neighbor

prediction as a ranking problem, and the predicted label error rate as a loss function over

rankings. Thus, at its core, the metric learning problem is a special case of information

retrieval in the query-by-example paradigm.

In recent years, many advances have been made in the development of learning

algorithms for ranking (Joachims, 2005, Burges et al., 2005, Xu and Li, 2007, Volkovs

46
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and Zemel, 2009). Unlike the classification problems typically addressed by metric

learning, ranking problems generally lack a single evaluation criterion. Rather, several

evaluation measures have been proposed, each capturing a different notion of “correct-

ness.” Because rankings are inherently combinatorial objects, these evaluation measures

are often non-differentiable with respect to model parameters, and therefore difficult to

optimize by learning algorithms. Despite the combinatorial difficulties of ranking prob-

lems, there are now several algorithmic techniques for optimizing various ranking eval-

uation measures (Joachims, 2005, Chakrabarti et al., 2008, Volkovs and Zemel, 2009).

In this chapter, we seek to bridge the gap between metric learning and ranking.

By adapting techniques from information retrieval, we derive a general metric learning

algorithm which optimizes for the true quantity of interest: the permutation of data

induced by distances in the learned metric.

Conversely, our parameterization of the ranking function by a distance metric is

quite natural for many information retrieval applications, including multi-media recom-

mendation.

The present approach, based on structural SVM (Tsochantaridis et al., 2005),

readily supports various ranking evaluation measures under a unified algorithmic frame-

work. The interpretation of metric learning as an information retrieval problem allows

us to apply loss at the level of rankings, rather than pairwise distances, and enables the

use of more general notions of supervision than those used in previous metric learning

algorithms, including asymmetric and non-transitive definitions of relevance.

3.1.1 Related work

There has been a great deal of research devoted to the design of algorithms for

learning an optimal metric in supervised settings. Typically, these algorithms follow the

general scheme of learning a linear transformation of the data such that distances to a

pre-determined set of “good neighbors” is minimized, while “bad neighbor” distances

are maximized.

Xing et al. (2003) define the good neighbors as all similarly-labeled points, and

solve for the metric by semidefinite programming. Distances for similar pairs of points

are upper-bounded by a constant, and dissimilar-pair distances are maximized. This
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algorithm attempts to map each class into a ball of fixed radius, but does not enforce

separation between classes. Weinberger et al. (2006) follow a similar approach, but

enforce constraints locally — i.e., label agreement is only enforced among the k nearest

neighbors of each point, rather than the entire class — rather than globally. The resulting

large margin nearest neighbor (LMNN) algorithm has enjoyed widespread success in a

variety of real-world applications.

Neighborhood components analysis (NCA) (Goldberger et al., 2005) relaxes

the problem by maximizing the expected number of correctly retrieved points under

a stochastic neighbor selection rule. While this relaxation makes intuitive sense, the

resulting optimization is non-convex, and it cannot identify and optimize the top-k near-

est neighbors in the learned space. Globerson and Roweis (2006) optimize a similar

stochastic neighbor selection rule while attempting to collapse each class to a single

point. This idea enforces more regularity on the output space than NCA and leads to a

convex optimization problem, but the assumption that entire classes can be collapsed to

distinct points rarely holds in practice.

The core of our method is based on the structural SVM framework (Tsochan-

taridis et al., 2005). We provide a brief overview in section 3.2, and discuss ranking-

specific extensions in section 3.4.

3.1.2 Preliminaries

Let X ⊂ Rd denote a training set (corpus) of n documents. Y will denote the

set of permutations (rankings) of X . For a query q, let X+
q and X−q denote the subsets

of relevant and irrelevant points in the training set. For a ranking y ∈ Y and two points

xi, xj ∈ X , we will use i≺yj (i�yj) to indicate that i is placed before (after) j in y.

Finally, let y(k) denote the index of the item at position k in a ranking y.

3.2 Structural SVM review

Structural SVM can be viewed as a generalization of multi-class SVM (Cram-

mer and Singer, 2002), where the set of possible prediction outcomes is generalized from

labels to structures, e.g., a parse tree, permutation, sequence alignment, etc. (Tsochan-
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taridis et al., 2005). The multi-class SVM formulation of Crammer and Singer (2002)

forces margins for each training point q ∈ X between the true label yq and all other

labels y ∈ Y:

∀y 6= yq : 〈wyq , q〉 ≥ 〈wy, q〉+ 1− ξ,

where ξ ≥ 0 is a slack variable to allow margin violations on the training set. Similarly,

structural SVM applies margins between the true structure yq and all other possible

structures y:

∀y ∈ Y : 〈w,ψ(q, yq)〉 ≥ 〈w,ψ(q, y)〉+ ∆(yq, y)− ξ. (3.1)

Here, ψ(q, y) is a vector-valued joint feature map which characterizes the relationship

between an input q and an output structure y. (This notation subsumes the class-specific

discriminant vectors of multi-class SVM.) Unlike class labels, two distinct structures

(yq, y) may exhibit similar accuracy, and the margin constraint should reflect this. To

support more flexible notions of structural correctness, the margin is set to ∆(yq, y):

a non-negative loss function defined between structures, which is typically bounded in

[0, 1].

For a test query q′ in multi-class SVM, the predicted label y is that which max-

imizes 〈wy, q′〉, i.e., the label with the largest margin over other labels. Analogously,

structural predictions are made by finding the structure y which maximizes 〈w,ψ(q′, y)〉.
The prediction algorithm must be able to efficiently use the learned vector w when com-

puting the output structure y. As we will see in section 3.2.2 and section 3.3, this is

easily accomplished in general ranking, and specifically in metric learning.

3.2.1 Optimization

Note that the set Y of possible output structures is generally quite large (e.g., all

possible permutations of the training set), so enforcing all margin constraints in eq. (3.1)

may not be feasible in practice. However, cutting planes can be applied to efficiently

find a small set A of active constraints which are sufficient to optimize w within some

prescribed tolerance (Tsochantaridis et al., 2005).

The core component of the cutting plane approach is the separation oracle,

which given a fixed w and input point q, outputs the structure y corresponding to the



50

margin constraint for q which is most violated by w:

y ← argmax
y∈Y

〈w,ψ(q, y)〉+ ∆(yq, y). (3.2)

Intuitively, this computes the structure y with simultaneously large loss ∆(yq, y) and

margin score 〈w,ψ(q, y)〉: in short, the weak points of the current model w. Adding

margin constraints for these structures y efficiently directs the optimization toward the

global optimum by focusing on the constraints which are violated the most by the current

model.

In summary, in order to apply structural SVM to a learning problem, three things

are required: a definition of the feature map ψ, the loss function ∆, and an efficient al-

gorithm for the separation oracle. These procedures are all of course highly interdepen-

dent and domain-specific. In the next section, we will describe the prevalent approach

to solving ranking problems in this setting.

3.2.2 Ranking with structural SVM

In the case of ranking, the most commonly used feature map is the partial order

feature (Joachims, 2005):

ψpo(q, y) ··=
∑
xi∈X+

q

xj∈X−q

yij

(
φ(q, xi)− φ(q, xj)

|X+
q | · |X−q |

)
, (3.3)

where

yij ··=

+1 i ≺y j

−1 i �y j
,

and φ(q, xi) is a feature map which characterizes the relation between a query q and

point xi. Intuitively, for each relevant-irrelevant pair (xi, xj), the difference vector

φ(q, xi) − φ(q, xj) is added if i ≺y j and subtracted otherwise. Essentially, ψpo em-

phasizes directions in feature space which are in some sense correlated with correct

rankings. Since φ only depends on the query and a single point, rather than the entire

list, it is well-suited for incorporating domain-specific knowledge and features.

Separation oracles have been devised for ψpo in conjunction with a wide variety

of ranking evaluation measures (Joachims, 2005, Yue et al., 2007, Chakrabarti et al.,

2008), and we give a brief overview in section 3.4.
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One attractive property of ψpo is that for a fixed w, the ranking y which maxi-

mizes 〈w,ψpo(q
′, y)〉 is simply xi ∈ X sorted by descending 〈w, φ(q′, xi)〉. As we will

show in the next section, this simple prediction rule can be easily adapted to distance-

based ranking.

3.3 Metric learning to rank

If the query q lies in the same space as the corpus X , a natural ordering is pro-

duced by increasing (squared) distance from q: ‖q − xi‖2. Since our goal is to learn an

optimal metric W , distances are computed in the learned space and sorted accordingly:

‖q − xi‖2
W . This computation is characterized in terms of Frobenius inner products as

follows:

‖q − xi‖2
W = (q − xi)TW (q − xi)

= tr
(
W (q − xi)(q − xi)T

)
=
〈
W, (q − xi)(q − xi)T

〉
F
,

where the second equality follows by the cyclic property of the trace.

This observation suggests a natural choice of φ:

φM(q, xi) ··= −(q − xi)(q − xi)T. (3.4)

The change of sign preserves the ordering used in standard structural SVM. Sorting

the corpus by ascending ‖q − xi‖W is therefore equivalent to sorting by descending

〈W,φM(q, xi)〉F. Similarly, by using φM with ψpo, the ordering y which maximizes the

generalized inner product 〈W,ψpo(q, y)〉F is precisely X in ascending order of distance

from q under the metric defined by W .

Thus, by generalizing the vector products in eqs. (3.1) and (3.2) to Frobenius

inner products, we can derive an algorithm to learn a metric optimized for list-wise

ranking loss measures.
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3.3.1 Algorithm

Ideally, we would like to solve for the optimal metric W which maximizes

the margins over all possible rankings for each query. However, since |Y| is super-

exponential in the size of the training set, implementing an exact optimization procedure

is not possible with current techniques. Instead, we approximate the full optimization

by using a cutting-plane algorithm.

Specifically, our algorithm for learning W is adapted from the 1-Slack margin-

rescaling cutting-plane algorithm of Joachims et al. (2009). At a high-level, the algo-

rithm alternates between optimizing the model parameters (in our case, W ), and updat-

ing the constraint set with a new batch of rankings (y1, y2, . . . , yn) (one ranking for each

point). The algorithm terminates once the empirical loss on the new constraint batch is

within a prescribed tolerance ε > 0 of the loss on the previous set of constraints.

The key difference between the 1-Slack approach and other similar cutting-plane

techniques is that, rather than maintaining a slack variable ξq for each q ∈ X , there is

a single slack variable ξ which is shared across all constraint batches, which are in turn

aggregated by averaging over each point in the training set.

We introduce two modifications to adapt the original algorithm to metric learn-

ing. First, W must be constrained to be positive semi-definite in order to define a valid

metric. Second, we replace the standard quadratic regularization 1
2
‖w‖2 (or 1

2
‖W‖2

F)

with 〈W, I〉F = tr(W ). Intuitively, this trades an `2 penalty on the eigenvalues of W for

an `1 penalty, thereby promoting sparsity and low-rank solutions.

The general optimization procedure is listed as algorithm 3.1. For compactness,

we define

δψpo(q, yq, y) ··= ψpo(q, yq)− ψpo(q, y).

3.3.2 Implementation

To solve the optimization problem in algorithm 3.1, we implemented a projected

sub-gradient descent solver in MATLAB1. After each sub-gradient step, the updated W

is projected back onto the feasible set Sd+ by spectral decomposition.

1Source code can be found at http://www-cse.ucsd.edu/~bmcfee/code/mlr.

http://www-cse.ucsd.edu/~bmcfee/code/mlr


53

Algorithm 3.1 Metric Learning to Rank (MLR).

Input: data X ⊂ Rd, target rankings (y1, . . . , yn), C > 0, ε > 0

Output: W ∈ Sd+, ξ ≥ 0

1: A ← ∅ � Initialize with no constraints

2: repeat

3: Solve for the optimal W and ξ:(
W, ξ

)
← argmin

W,ξ
〈W, I〉F + Cξ︸ ︷︷ ︸

f(W )

s. t.∀(y1, y2, · · · , yn) ∈ A :

1

n

∑
q∈X

〈W, δψpo(q, yq, yq)〉F ≥
1

n

∑
q∈X

∆(yq, yq)− ξ

W ∈ Sd+
ξ ≥ 0

4: for each q ∈ X do

5: yq ← argmax
y∈Y

∆(yq, y) +
〈
W,ψpo(q, y)

〉
F

6: end for

7: A ← A∪ { (y1, . . . , yn) } � Update the active set

8: until
1

n

∑
q∈X

∆(yq, yq)−
〈
W, δψpo(q, yq, yq)

〉
F
≤ ξ + ε

Although there appears to be a great many feature vectors (δψpo) in use in the al-

gorithm, efficient bookkeeping allows us to reduce the overhead of gradient calculations.

Note that ξ can be interpreted as the point-wise maximum of a set { ξ1, ξ2, . . . }, where

ξi corresponds to the margin constraint for the ith batch. Therefore, at any time when

ξ > 0, a sub-gradient∇·f(W ) of the objective f(W, ξ) can be expressed in terms of any

single batch (y1, . . . , yn) which achieves the current largest margin violation (assuming
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one exists):

∇·f(W ) = I − C

n

∑
q∈X

δψpo(q, yq, yq) ∈ ∂f(W ).

Note that ψpo only appears in algorithm 3.1 in the form of averages over con-

straint batches. This indicates that it suffices to maintain only a single d×d matrix

Ψ ··=
1

n

∑
q∈X

δψpo(q, yq, yq)

for each batch, rather than individual matrices for each point. By exploiting the quadratic

form of eq. (3.4), each ψpo(q, y) can be factored as

ψpo(q, y) = XS(q, y)XT,

where the columns of X contain the data, and

S(q, y) ··=
∑
i∈X+

q

j∈X−q

yij

(
Eqi − Eqj
|X+

q | · |X−q |

)
, (3.5)

Eqx ··= −(eq − ex)(eq − ex)
T ∈ Sn,

and ei is the ith standard basis vector in Rn. By linearity, this factorization can also be

carried through to δψpo(q, yq, y) and Ψ.

The summation in eq. (3.5) can be computed more directly by counting the oc-

currences of Eqx with positive and negative sign, and collecting the terms. This can be

done in linear time by a single pass through y.

By expressing Ψ in factored form, we can delay all matrix multiplications un-

til the final Ψ computation. Because the S(q, y) can be constructed directly without

explicitly building the outer-product matrices Eqi, we reduce the number of matrix mul-

tiplications at each sub-gradient calculation from O(n) to 2.

3.4 Ranking measures

Here, we give a brief overview of popular information retrieval evaluation crite-

ria, and how to incorporate them into the learning algorithm.
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Recall that the separation oracle (eq. (3.2)) seeks a ranking y which maximizes

the sum of the discriminant score 〈W,ψpo(q, y)〉F and the ranking loss ∆(yq, y). One

property shared by all evaluation criteria under consideration is invariance to permuta-

tions within relevant (or irrelevant) sets. As has been previously observed, optimizing

over y reduces to finding an optimal interleaving of the relevant and irrelevant sets, each

of which has been pre-sorted by the point-wise discriminant score 〈W,φM(q, xi)〉F (Yue

et al., 2007).

Since all measures discussed here take values in [0, 1] (1 being the score for an

ideal ranking yq), we consider loss functions of the form

∆(yq, y) ··= Score(q, yq)− Score(q, y) = 1− Score(q, y).

3.4.1 AUC

The area under the ROC curve (AUC) is a commonly used measure which char-

acterizes the trade-off between true positives and false positives as a threshold parameter

is varied. In our case, the parameter corresponds to the number of items returned (or,

predicted as relevant). AUC can equivalently be calculated by counting the portion of

incorrectly ordered pairs (i.e., j ≺y i, i relevant and j irrelevant):

AUC(q, y) ··=
1

|X+
q | · |X−q |

∑
i∈X+

q

j∈X−q

1 + yij
2

This formulation leads to a simple and efficient separation oracle, described by Joachims

(2005).

Note that AUC is position-independent: an incorrect pair-wise ordering at the

bottom of the list impacts the score just as much as an error at the top of the list. In

effect, AUC is a global measure of list-wise cohesion.

3.4.2 Precision-at-k

Precision-at-k (P@k) is the fraction of relevant results out of the first k returned.

P@k is therefore a highly localized evaluation criterion, and captures the quality of

rankings for applications where only the first few results matter, e.g., web search.
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The separation oracle for P@k exploits two facts: there are only k + 1 possible

values for P@k:

P@k(q, y) ∈
{

0

k
,

1

k
,

2

k
, . . . ,

k

k

}
,

and for any fixed value, the best y is completely determined by the ordering induced by

discriminant scores. We can then evaluate all k + 1 interleavings of the data to find the

y which achieves the maximum. See Joachims (2005) for details.

Closely related to P@k is the k-nearest neighbor prediction score. In the binary

classification setting, the two are related by

kNN(q, y; k) ··=
s

P@k(q, y) >
1

2

{
,

and the P@k separation oracle can be easily adapted to k-nearest neighbor. However, in

the multi-class setting, the interleaving technique fails because the required fraction of

relevant points for correct classification depends not only on the relevance or irrelevance

of each point, but the labels themselves.

In informal experiments, we noticed no quantitative differences in performance

between metrics trained for (binary) kNN and P@k, and we omit kNN from the experi-

ments in section 3.5.

3.4.3 Average Precision

Average precision (AP) (Baeza-Yates and Ribeiro-Neto, 1999) is the precision-

at-k score of a ranking y, averaged over all positions k of relevant documents:2

AP(q, y) =
1

|X+
q |

|X+
q |+|X−q |∑
k=1

P@k(y) ·
q
y(k) ∈ X+

q

y
. (3.6)

Yue et al. (2007) provides a greedy separation oracle for average precision that runs in

O(|X+
q | · |X−q |) time. In appendix A, we derive a somewhat simpler dynamic program-

ming algorithm with equivalent asymptotic runtime, which is used in our implementa-

tion.
2Mean average precision (MAP) is AP averaged across queries.
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3.4.4 Mean Reciprocal Rank

Mean reciprocal rank (MRR) is the inverse position of the first relevant document

in y, and is therefore well-suited to applications in which only the first result matters.

Like P@k, there is a finite set of possible score values for MRR:

MRR(q, y) ∈
{

1

1
,
1

2
, . . . ,

1

1 + |X−q |

}
and for a fixed MRR score, the optimal y is completely determined. It is similarly

straightforward to search over score values for the maximizer. See Chakrabarti et al.

(2008) for a more complete treatment of optimizing MRR.

3.4.5 Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen,

2000) is similar to MRR, but rather than rewarding only the first relevant document,

all of the top k documents are scored at a decaying gain factor G(·). In the present

setting with binary relevance levels, the formulation we adopt is expressed as:

NDCG(q, y; k) ··=
∑k

i=1G(i) ·
q
i ∈ X+

q

y∑k
i=1 G(i)

G(i) ··=


1 i = 1

1
log2(i)

2 ≤ i ≤ k

0 i > k

.

Chakrabarti et al. (2008) propose a dynamic programming algorithm for the NDCG

separation oracle, which we adapt here.

3.5 Experiments

To evaluate the MLR algorithm, we performed experiments on both small-scale

and large-scale data sets, as described in the next two sections. In all experiments, we

fixed the accuracy threshold at ε = 0.01.
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Table 3.1: UCI data sets: dimensionality (d), training and test set sizes, and the number

of classes. IsoLet’s training set was further split into training and validation sets of size

4991 and 1247.

d # Train # Test # Classes

Balance 4 500 125 3

Ionosphere 34 281 70 2

WDBC 30 456 113 2

Wine 13 143 35 3

IsoLet 170 6238 1559 26

3.5.1 Classification on UCI data

We first tested the accuracy and dimensionality reduction performance of our

algorithm on five data sets from the UCI repository (Asuncion and Newman, 2007):

Balance, Ionosphere, WDBC, Wine, and IsoLet. For the first four sets, we generated 50

random 80/20 training and test splits. Each dimension of the data was z-scored by the

statistics of the training splits.

For IsoLet, we replicate the experiment of Weinberger et al. (2006) by generating

10 random 80/20 splits of the training set for testing and validation, and then testing on

the provided test set. We project by PCA (as computed on the training set) to 170

dimensions, enough to capture 95% of the variance.

Table 3.1 contains a summary of the data sets used here.

We trained metrics on each data set with the five variants of MLR: MLR-AUC,

MLR-P@k, MLR-MAP, MLR-MRR, and MLR-NDCG. For comparison purposes, we

also trained metrics with Large Margin Nearest Neighbor (LMNN) (Weinberger et al.,

2006), Neighborhood Components Analysis (NCA) (Goldberger et al., 2005), and Met-

ric Learning by Collapsing Classes (MLCC) (Globerson and Roweis, 2006).

To evaluate the performance of each algorithm, we tested k-nearest neighbor

classification accuracy in the learned metrics. Classification results are presented in
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Table 3.2: k-nearest neighbor classification error (%) on learned metrics. Reported error

is corresponds to the best choice of C and k.

Algorithm Balance Ionosphere WDBC Wine IsoLet

MLR-AUC 7.9 12.3 2.7 1.4 4.5

MLR-P@k 8.2 12.3 2.9 1.5 4.5

MLR-MAP 6.9 12.3 2.6 1.0 5.5

MLR-MRR 8.2 12.1 2.6 1.5 4.5

MLR-NDCG 8.2 11.9 2.9 1.6 4.4

LMNN 8.8 11.7 2.4 1.7 4.7

NCA 4.6 11.7 2.6 2.7 10.8

MLCC 5.5 12.6 2.1 1.1 4.4

Euclidean 10.3 15.3 3.1 3.1 8.1

table 3.2.3 With the exception of NCA and MLCC on the Balance set, all results on

Balance, Ionosphere, WDBC and Wine are within the margin of error. In general, MLR

achieves accuracy on par with the best algorithms under comparison, without relying on

the input features for selecting target neighbors.

Figure 3.1 illustrates the dimensionality reduction properties of the MLR algo-

rithms. In all cases, MLR achieves significant reductions in dimensionality from the

input space, comparable to the best competing algorithms.

3.5.2 eHarmony data

To evaluate MLR on a large data set in an information retrieval context, we

trained metrics on matching data provided by eHarmony:4 an online dating service

which matches users by personality traits.

For our experiments, we focused on the following simplification of the data and

3LMNN accuracy on IsoLet was reported by Weinberger et al. (2006). Dimensionality results were
not reported.

4http://www.eharmony.com

http://www.eharmony.com
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Figure 3.1: Dimensionality reduction for the UCI data sets. Reported dimensionality is

the median number of dimensions necessary to capture 95% of the spectral mass of the

best-performing W . “Euclidean” corresponds to the native dimensionality of the data.

problem: each matching is presented as a pair of users, with a positive label when the

match was successful (i.e., users expressed mutual interest), and negative otherwise.

Each user is represented by a vector in R56 which describes the user’s personality, inter-

ests, etc.. We consider two users mutually relevant if they are presented as a successful

match, and irrelevant if the match is unsuccessful. Irrelevance is not assumed for un-

matched pairs.

Matchings were collected over two consecutive time intervals of equal length,

and split into training (interval 1) and testing (interval 2). The training split contains

approximately 295000 unique users, not all of which define useful queries: some appear

only in positive matchings, while others appear only in negative matchings. Since these

users provide no discriminative data, we omit them from the set of query users. Note

that such users are still informative, and are included in the training set as results to be

ranked.

We further reduce the number of training queries to include only users with at

least 2 successful and 5 unsuccessful matchings, leaving approximately 22000 training

queries. A summary of the data is presented in table 3.3.

We trained metrics with MLR-AUC, MLR-MAP and MLR-MRR. Due to the

small number of minimum positive results for each query, we omit MLR-P@k and
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Table 3.3: The eHarmony matching data.

Matchings Unique users Queries

Training 506688 294832 22391

Test 439161 247420 36037

Table 3.4: Testing accuracy and training time for MLR and SVM-MAP on eHarmony

matching data. Time is reported in CPU-seconds, and |A| is the number of cutting-plane

batches before convergence.

Algorithm AUC MAP MRR Time |A|
MLR-AUC 0.612 0.445 0.466 232 7

MLR-MAP 0.624 0.453 0.474 2053 23

MLR-MRR 0.616 0.448 0.469 809 17

SVM-MAP 0.614 0.447 0.467 4968 36

Euclidean 0.522 0.394 0.414 — —

MLR-NDCG from this experiment. Note that because we are in an information retrieval

setting, and not classification, the other metric learning algorithms compared in the pre-

vious section do not apply. For comparison, we train models with SVM-MAP (Yue

et al., 2007), and feature map φ(q, xi) ··= (q−xi). When training SVM-MAP, we swept

over C ∈ { 10−2, 10−1, . . . , 105 }.
Table 3.4 shows the accuracy and timing results for MLR and SVM-MAP. The

MLR-MAP and MLR-MRR models show slight, but statistically significant improve-

ment over the SVM-MAP model. Note that the MLR algorithms train in significantly

less time than SVM-MAP, and require fewer calls to the separation oracle.
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3.6 Conclusion

We have presented a metric learning algorithm which optimizes for ranking-

based loss functions. By casting the problem as an information retrieval task, we focus

attention on what we believe to be the key quantity of interest: the permutation of data

induced by distances.
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Chapter 4

Faster structural metric learning

4.1 Introduction

Structural metric learning algorithms produce a transformation of a feature space

which is optimized to produce structured outputs, such as nearest-neighbor rankings or

graphs induced by distance under the learned transformation (chapter 3) (Shaw et al.,

2011). These algorithms have a wide variety of applications, including nearest-neighbor

classification, data visualization, and query-by-example information retrieval. However,

the power of these methods comes at a cost: finding the optimal transformation often

amounts to solving a large semi-definite programs which can be prohibitively expensive

in large data sets.

In this chapter, we develop an efficient training algorithm for structural met-

ric learning. The proposed method combines the 1-slack structural SVM algorithm

(Joachims et al., 2009) with the alternating-direction method of multipliers (ADMM)

technique (Boyd et al., 2011), and reduces an expensive semi-definite programming

problem to a sequence of small quadratic programs. The resulting algorithm provides

substantial efficiency benefits over previous methods.

63
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4.2 Structural metric learning

In a typical metric learning problem, the goal is to learn a linear transformation

of some data X ⊂ Rd in order to improve nearest-neighbor classification (Weinberger

et al., 2006, Davis et al., 2007). Structural metric learning generalizes this setting to

optimize the prediction of structures Y under the learned transformation, rather than the

pair-wise distance constraints typical of classification-based metric learning. Formulat-

ing a metric learning algorithm (structural or not) directly in terms of the transformation

L ∈ Rk×d usually results in a difficult, non-convex optimization problem, which is then

re-formulated as a convex optimization problem over a positive semi-definite matrix

W ··= LTL ∈ Sd+.

For the purposes of this chapter, we will focus on the metric learning to rank

(MLR) algorithm (chapter 3), although the proposed approach would apply equally well

to the structure-preserving metric learning (SPML) algorithm (Shaw et al., 2011). MLR

is a metric learning variation of the structural SVM (Tsochantaridis et al., 2005) which

optimizes W ∈ Sd+ to minimize a ranking loss function ∆ : Y × Y → R+ (e.g., de-

crease in mean average precision) over permutations of data. The optimization problem

contains a large (super-exponential) number of constraints, but it can be efficiently ap-

proximated by cutting-plane techniques. Specifically, MLR uses the 1-slack method

(Joachims et al., 2009) to approximate the following convex optimization problem:

min
W∈Sd+

〈W, I〉F +
C

n

∑
q∈X

ξq (4.1)

s. t.∀q ∈ X , y ∈ Y : 〈W,ψ(q, yq)− ψ(q, y)〉F ≥ ∆(yq, y)− ξq

Here, X ⊂ Rd is the training set of n points; Y is the set of all permutations over

X ; C > 0 is a slack trade-off parameter; ψ : X × Y → Sd is a feature encoding of

an input-output pair (q, y); and ∆(yq, y) ∈ [0, 1] is the margin, i.e., loss incurred for

predicting a ranking y rather than the true ranking yq. The feature map ψ is designed

so that 〈W,ψ(q, y)〉F is large when the ranking of X induced by distance from q agrees

with y, and small otherwise. For a query q with relevant set X+
q ⊆ X and irrelevant set
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X−q ⊆ X , ψ is defined by

ψ(q, y) ··=
∑
i∈X+

q

∑
j∈X−q

yij
φ(q, xi)− φ(q, xj)

|X+
q | · |X−q |

,

φ(q, x) ··= −(q − x)(q − x)T,

yij ··=

+1 i ≺y j

−1 otherwise
.

Algorithm 4.1 approximates eq. (4.1) by alternately solving a convex optimiza-

tion problem (step 3) over a small set A of active constraints, and updating A with the

constraints most violated by the resulting W (steps 5–10). The process repeats until the

most-violated constraint (and hence, all other constraints) are satisfied to within some

specified ε > 0 of the loss on the active set A.

In structural SVM, the constraint generation step forms the main computational

bottleneck, as it typically entails solving a sequence of n dynamic programs, each with

linear or quadratic complexity (depending on the choice of loss function ∆), resulting

in O(n2)–O(n3) computation for each iteration.1 By contrast, the SVM optimization

(analogous to step 3) is a small quadratic program, and can be solved quite efficiently.

However, in the metric learning problem, the situation can easily be reversed due

to the increased complexity of semi-definite programming. In particular, the algorithm

proposed in chapter 3 optimizes W in step 3 via projected sub-gradient descent. When

the dimensionality d is larger than a few hundred, the complexity of repeatedly project-

ing back onto the feasible set after each step — O(d3) for each spectral decomposition

and negative eigenvalue thresholding operation — can easily overshadow the overhead

of constraint generation.

We note that the vast majority of metric learning algorithms (structural or oth-

erwise) suffer from this computational bottleneck, although various methods have been

proposed to accelerate or circumvent maintaining feasibility, including: rank-1 updates

(Shalev-Shwartz et al., 2004, Shen et al., 2009), factored optimization (Weinberger and

Saul, 2008), and eigenvalue optimization (Ying and Li, 2012).
1Though it is not our focus in this work, we note that the burden of constraint generation can also

be eased, for example, by exploiting parallelism or sub-sampling X in the loop 6–10 (Yu and Joachims,
2008).
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Algorithm 4.1 Metric learning to rank (MLR)

Input: Data X ⊂ Rd, target rankings {yq}, slack parameter C > 0, accuracy ε > 0

Output: W ∈ Sd+
1: A ← { }
2: repeat

3: Solve for
(
W, ξ

)
:

W ← argmin
W∈Sd+

〈W, I〉F + C max
(∆,Ψ)∈A

h(∆− 〈W,Ψ〉F)︸ ︷︷ ︸
f(W )

(4.2)

ξ ← max
(∆,Ψ)∈A

h
(
∆−

〈
W,Ψ

〉
F

)
h(x) ··= x · Jx > 0K

4: ∆̂← 0, Ψ̂← 0 � Generate the new constraint batch

5: for q = 1, 2, . . . , n do

6:

yq ← argmax
y∈Y

∆(yq, y) + 〈W,ψ(q, y)〉F

∆̂← ∆̂ + 1/n∆(yq, yq)

Ψ̂← Ψ̂ + 1/n
(
ψ(q, yq)− ψ(q, yq)

)
7: end for

8: A ← A∪
{ (

∆̂, Ψ̂
) }

� Update the constraint set

9: until ∆̂−
〈
W, Ψ̂

〉
F
≤ ξ + ε � Check for convergence

For the remainder of this chapter, our focus will be on improving the speed of

the inner-loop optimization (step 3). In particular, we will show that the semi-definite

program can be reduced to a sequence of quadratic programs, which due to the unique

structure of the 1-slack formulation, are extremely small — independent of both input

dimensionality d and number of training points n — and thus efficiently solvable.
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4.3 Alternating direction optimization

Rather than optimizing W via projected sub-gradient descent, we will instead

use the alternating direction method of multipliers (ADMM) approach (Boyd et al.,

2011). For our application, this corresponds to transforming the optimization problem

(algorithm 4.1, step 3) into the following equivalent problem:

min
W,Z

f(W ) + g(Z) (4.3)

s. t. W − Z = 0

g(Z) ··=

0 Z ∈ Sd+

∞ Z /∈ Sd+
. (4.4)

By introducing Lagrange multipliers Y ∈ Sd, the above problem gives rise to the aug-

mented Lagrangian:

Lρ(W,Z, Y ) ··= f(W ) + g(Z) + 〈Y,W − Z〉F +
ρ

2
‖W − Z‖2

F,

where ρ > 0 is a scaling parameter.

The ADMM algorithm optimizes eq. (4.3) by alternating between updates of the

primal variables (directions) W , Z and the scaled dual variable U ··= 1/ρY as follows:2

W t+1 ← argmin
W

f(W ) +
ρ

2
‖W − (Zt − U t)‖2

F (4.5)

Zt+1 ← argmin
Z

g(Z) +
ρ

2
‖W t+1 − (Z − U t)‖2

F (4.6)

U t+1 ← U t +W t+1 − Zt+1. (4.7)

In the W t+1 update, Zt and U t are held fixed, and the resulting update amounts to

solving a convex optimization problem in W . The Zt+1 update simplifies to computing

the orthogonal projection

Zt+1 ← ΠSd+

[
W t+1 + U t

]
,

which is performed by thresholding the negative eigenvalues of W t+1 + U t at 0.

2This substitution simplifies notation, and the updates equate to minimizing Lρ over W (eq. (4.5)) or
Z (eq. (4.6)) for a fixed Y .
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The ADMM algorithm amounts to repeatedly solving an unconstrained, strongly

convex optimization problem (eq. (4.5)), projecting the solution onto the feasible set

(eq. (4.6)), and then updating the residual (eq. (4.7)). Although, for this setting, the the-

oretical convergence rate of ADMM is no better than the projected sub-gradient method

— O(ε−2) steps for ε-sub-optimality — it has been empirically observed to yield satis-

factory solutions after a small number (e.g., tens) of steps (Boyd et al., 2011).

Qualitatively, the fundamental advantage of the ADMM approach over projected

sub-gradient descent is that projections (i.e., Z updates) are computed much less fre-

quently. While the projected sub-gradient method computes projections after every step

(and also during the line search to determine step size), the ADMM method only projects

after solving the unconstrained problem (W step) to optimality. As we will demonstrate

in section 4.4, this fact, combined with early stopping, can result in dramatic reduction

in training complexity without degrading accuracy.

4.3.1 Dual optimization

The W update listed as eq. (4.5) is similar to the update in algorithm 4.1 with

two modifications: 1) the constraint W ∈ Sd+ has been removed, and 2) it is strongly

convex, due to the quadratic term from Lρ. In principle, this could be solved directly in

primal form by standard techniques. However, the active set A is often quite small: in

practical problems, |A| rarely exceeds 100–200 (and is often much smaller), while the

number of parameters is O(d2) and can easily number in the tens of thousands. This

suggests that a dual formulation may lead to a more efficient algorithm.

To simplify the following derivation, let Rt ··= Zt − U t and m ··= |A|. The W

update eq. (4.5) can be stated as the following linearly constrained quadratic program:

min
W,ξ≥0

〈W, I〉F + Cξ +
ρ

2
‖W −Rt‖2

F (4.8)

s. t. ∀(∆i,Ψi) ∈ A : ∆i − 〈W,Ψi〉F − ξ ≤ 0.

Introducing Lagrange multipliers α ∈ Rm
+ , β ∈ R+, eq. (4.8) has the following La-
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grangian:

L(W, ξ, α, β) ··= 〈W, I〉F + Cξ +
ρ

2
‖W −Rt‖2

F +
m∑
i=1

αi (∆i − 〈W,Ψi〉F − ξ)− βξ.

(4.9)

Differentiating with respect to W yields the following optimality condition:

∇WL(W, ξ, α, β) = I + ρ(W −Rt)−
m∑
i=1

αiΨi = 0

⇒ W = Rt +
1

ρ

(
m∑
i=1

αiΨi − I

)
. (4.10)

Substituting eq. (4.10) into eq. (4.9) yields the dual program:

sup
α∈Rm+
β∈R+

inf
W,ξ
L(W, ξ, α, β) =

1

ρ
max
α∈Rm+

− 1

2
αTHα− bTα (4.11)

s. t. 1Tα ≤ C,

with the structure kernel H ∈ Sm+ and cost vector b ∈ Rm defined as:

Hij ··= 〈Ψi,Ψj〉F (4.12)

bi ··= 〈ρRt − I,Ψi〉F − ρ∆i. (4.13)

(Details of the derivation are deferred to section 4.A.)

Equation (4.11) is a linearly constrained quadratic program in m variables, and

can easily be solved by off-the-shelf tools (e.g., qplcprog in MATLAB). Note that

the dual program is independent of both n and d, resulting in significant improvements

in efficiency for large problems. After computing a dual optimum α, a primal optimum

W can be recovered via eq. (4.10). The resulting MLR-ADMM algorithm is listed as

algorithm 4.2.

Equation (4.11) bears a strong resemblance to the 1-slack structural SVM dual

(Joachims et al., 2009). The key distinction lies in the definition of b, which for SVM-

struct is simply the margin −∆, but here includes contributions from the linear regu-

larization and augmented Lagrangian terms. In fact, an entire family of metric learning

parameterizations can be shown to take on exactly this form (with slight variations in H
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Algorithm 4.2 MLR-ADMM (step 3 of algorithm 4.1)

Input: Constraints A = { (∆,Ψ) }, slack parameter C > 0

Output: W ∈ Sd+
1: W 0 ← 0, Z0 ← 0, U0 ← 0

2: for t = 0, 1, 2, . . . , T (until convergence) do

3: ∀i : bi ← 〈ρ(Zt − U t)− I,Ψi〉F − ρ∆i

4: α← argmax
α

Equation (4.11)

5: W t+1 ← Zt − U t + 1/ρ (
∑m

i=1 αiΨi − I)

6: Zt+1 ← ΠSd+ [W t+1 + U t]

7: U t+1 ← U t +W t+1 − Zt+1

8: end for

9: return ΠSd+

[
W T

]
and b), including kernel and multiple-kernel projection (section 4.3.2) and diagonally-

constrained (axis-aligned) learning (section 4.B). The common dual form allows a sin-

gle, generic implementation of algorithm 4.2 to be applied across all variants.

4.3.2 Multiple kernel projection

The MLR algorithm, as originally stated, learns a linear transformation of data

in Rd. However, using the techniques described in chapter 2, it has since been extended

to allow for non-linear transformations via one or more kernel functions (Galleguillos

et al., 2011). Let {K1, . . . , Kp } ⊂ Sn+ denote p kernel matrices over the training set

X , with corresponding kernel functions. The multiple kernel MLR algorithm solves the

following optimization problem:

min
W 1,...,W p∈Sn+

ξ≥0

p∑
k=1

〈
W k, Kk

〉
F

+ Cξ (4.14)

s. t.∀(∆i,Ψ
1
i ,Ψ

2
i , . . . ,Ψ

p
i ) ∈ A : ∆i −

p∑
k=1

〈
W k,Ψk

i

〉
F
− ξ ≤ 0,

where W k and Ψk are transformations and average feature-encodings restricted to the

kth kernel Kk. For a test point x in this setting, the learned transformations W k are
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applied to the vectors Kk
x ∈ Rn of inner products between x and each training point

(Galleguillos et al., 2011).

The ADMM algorithm of the previous section can also be easily extended to

learn multiple kernel projections (MKP).3 For each transformation W k, we introduce

an auxiliary variable Zk and scaled Lagrange multiplier Uk just as before.4 The corre-

sponding MKP structure kernel HM and cost vector bM are defined as follows:

HM
ij
··=

p∑
k=1

〈
Ψk
i ,Ψ

k
j

〉
F

bMi ··=

(
p∑

k=1

〈
ρZk − ρUk −Kk,Ψk

i

〉
F

)
− ρ∆i.

The corresponding dual optimization problem is identical to eq. (4.11) (with H and b

replaced by HM and bM), and the primal optima are recovered by:

W
k

= Zk − Uk +
1

ρ

(
m∑
i=1

αiΨ
k
i −Kk

)
.

4.3.3 Implementation details

To set ρ, we initialize with ρ = 1 and use the variable scaling technique described

by Boyd et al. (2011). Effectively, ρ is adapted so that for a fixed η > 0, the ratio of

residual norms is bounded by

1

η
≤ ρ‖Zt+1 − Zt‖F
‖Zt+1 −W t+1‖F

≤ η. (4.15)

We set η = 10, and if either side of eq. (4.15) is not met, ρ is scaled up or down

(depending on which inequality is violated) by a factor of 2 before the next iteration. In

informal experiments, we did not find the algorithm to be sensitive to these parameters.

To accelerate convergence across iterations of algorithm 4.1, each call to algo-

rithm 4.2 is warm-started with the solutions W,Z,U , and ρ from the previous call. We

also implemented optional early stopping by specifying a maximum number of itera-

tions T .
3We distinguish multiple kernel projection from multiple kernel learning, wherein the goal is generally

to learn a weighted combination K ′ =
∑
k µkK

k.
4The step index superscript t is suppressed in this section to ease presentation.
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4.4 Experiments

To evaluate the proposed method, we conducted two sets of experiments. The

first set of experiments uses noisy versions of standard UCI data sets to test for effi-

ciency and robustness. The second set of experiments uses realistic, multi-media data

to evaluate the effects of early stopping, and the efficiency of diagonally-constrained

multiple kernel projection.

4.4.1 UCI data

As a first experiment, we compare the proposed algorithm (MLR-ADMM) to

the original projected sub-gradient method (MLR-Proj) on standard data sets from the

UCI repository: Balance (n = 625, d = 4), Ionosphere (n = 351, d = 34), WDBC

(n = 569, d = 30), and Wine (n = 178, d = 13). We also include comparisons to two

standard algorithms: information-theoretic metric learning (ITML) (Davis et al., 2007)

and large-margin nearest neighbor (LMNN) (Weinberger et al., 2006).

To study the effect of dimensionality on the various learning algorithms, we

embed each data set into a higher-dimensional space by padding each example xi with

IID uniform binary noise xσ:

xTi 7→
(
xTi , x

T
σ

)
∈ Rd+D, xσ ∼U { −1,+1 }D .

This simulates a common practical scenario where a small number of informative fea-

tures are hidden amongst a large number of extraneous, noisy features. Ideally, a robust

metric learning algorithm should produce transformations which suppress the noisy di-

mensions and preserve the informative features.

Setup

For each data set, we generated 50 random 60/20/20 training/validation/test

splits. Each split was padded with D-dimensional random bit noise, for each D ∈
{ 0, 25, 26, 27, 28 }. Each split was normalized by z-scoring with the training set statis-

tics.
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Performance was measured by 3-nearest-neighbor accuracy using the training set

as examples. For ITML, the slack parameter γ was varied over { 1, 10, . . . , 106 }, and

the bestW was selected by validation set accuracy. For LMNN, the push-pull parameter

µ was varied over { 0.1, 0.2, . . . , 0.9 }. For MLR, the loss function ∆ was fixed to mean

average precision (MAP), and C was varied over { 1, 10, . . . , 106 }. MLR-ADMM was

fixed to T = 10 steps.

Results

Figure 4.1 displays the error rates of the various learning algorithms across all

data sets and values of D. For D = 0, all algorithms are statistically equivalent under

a Bonferroni-corrected Wilcoxon test (α = 0.05). Not surprisingly, as D increases, the

problem becomes more difficult, and test errors increase across the board. However,

on all data sets and D ≥ 64, both MLR algorithms significantly outperform ITML and

LMNN.

This can be viewed, in part, as a consequence of regularization; while MLR ex-

plicitly prefers low-rank solutions (due to the trace penalty 〈W, I〉F), ITML prefers high-

rank solutions (by minimizing log det divergence from I), and the effects of LMNN’s

push-pull objective are less clear. Figure 4.2 illustrates the effective rank — i.e., the

number of dimensions necessary to capture 95% of the spectral mass of W — aver-

aged across all splits of the wine-256 set. As expected, effective rank increases with

input dimensionality, not only for ITML and LMNN, but MLR-Proj as well. Interest-

ingly, MLR-ADMM consistently produces metrics of comparable effective rank to the

noise-free case.

Figure 4.3 illustrates the reduction in the number of PSD projections from MLR-

Proj to MLR-ADMM. In these data sets, n is small enough that constraint generation is

less of a bottleneck than the projection step, so the projection count is a reliable proxy

for runtime. As a general trend, fig. 4.3 shows at least an order of magnitude reduction

in the number of projections.
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Figure 4.1: Accuracy of ITML, LMNN, MLR-ADMM and MLR-Proj as D noisy di-

mensions are introduced. Results are averaged across 50 random splits. In all data sets,

for D ≥ 64, both MLR methods significantly outperform ITML and LMNN under a

Bonferroni-corrected Wilcoxon signed rank test (α = 0.05).
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Figure 4.2: Mean effective rank of learned metrics as dimensionality increases. MLR-

ADMM produces low-rank solutions across all values of D, and achieves the lowest

test-error. For other methods, effective rank scales with D. This effect was consistent

across data sets.
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Figure 4.3: Median number of Sd+ projections for ADMM and projected sub-gradient

descent for each data set and noise dimensionality D. Error bars correspond to 25th and

75th percentiles across 50 splits.
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4.4.2 Multimedia data

Our second set of experiments involves more realistic, multi-media applications:

content-based music similarity, and image segment classification. Our experiments use

the following data:

Music similarity (CAL10K) (Tingle et al., 2010) (chapter 5): 5419 songs with au-

dio features represented as vectors in R1024, partitioned into ten random 40/30/30

training/validation/test splits. For each split, each song xi has a set of relevant

training songs Xi ⊆ Xtrain, and the goal is to learn a distance function which re-

covers the relevant songs for a test song. Note that relevance is asymmetric and

non-transitive in this data, so pair-wise methods such as ITML, and classification-

based methods like LMNN do not apply.

Image segment classification (Graz-02) (Marszałek and Schmid, 2007, McFee et al.,

2011): 1410 training segments and 1377 test segments, represented by six kernels,

which encode texture, color, scene, and contextual interactions. Each segment

belongs to one of three classes, and the goal is to maximize k-nearest neighbor

accuracy.

Setup

In the music similarity experiment, we fix ∆ to AUC (area under the ROC curve),

and vary C ∈ { 104, 105, 106 }. The best value of C (and corresponding metric) is

selected by AUC performance on the validation set. To measure the effects of early

stopping, we vary T ∈ { 1, 5, 10, 25, 50, 100 } and track the resulting accuracy, as well

as the number of projection operations and calls to the constraint generator (the two key

bottlenecks during training). Each split is compressed by PCA to capture 95% training

set variance, resulting in dimensionality d ≈ 253± 6.

In the image segment classification problem, we constrain each W k to be di-

agonal (section 4.B), fix ∆ to AUC, and vary C ∈ { 101, 102, . . . , 106 }. Performance

is measured by 5-nearest-neighbor classification, and the best value of C (and W k) is

chosen by leave-one-out cross-validation on the training set. Although the diagonal con-

straint greatly reduces the complexity of projecting onto the feasible set, we are inter-
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ested to see if the low memory footprint of MLR-ADMM’s dual optimization provides

additional speedups over MLR-Proj. All experiments on this data set were conducted

on a 1.73GHz Intel Core i7 with 8GB of RAM, and we compare the wall-clock time of

training for ADMM and projected sub-gradient descent. We compare training time for

T ∈ { 1, 5, 10, 25 }.

Results

The results of the music similarity experiment are presented in fig. 4.4. As in

the UCI experiments, MLR-ADMM performs comparably (and, indeed, slightly better)

than MLR-Proj, across all values of T . For small values of T , MLR-ADMM requires, on

average, an order of magnitude fewer projection operations than MLR-Proj: 275± 23.8

for T = 10, compared to 2733.7 ± 1443.6 for MLR-Proj. Note that for T = 1, the

W returned at each step can be highly sub-optimal, and as a result, more cutting planes

are required to converge in algorithm 4.1. However, for intermediate values of T , the

number of cutting planes does not significantly differ from MLR-Proj, and speedup is

directly proportional to the decrease in projections.

Table 4.1 shows the results of the image segment classification experiment. Both

MLR-ADMM and MLR-Proj achieve comparable error rates, but MLR-ADMM takes

significantly less time. For T = 10, ADMM achieves a 20.05× speedup over MLR-

Proj, and 30.4× speedup for T = 25, despite the fact that the PSD projection bottleneck

has been removed due the diagonal constraint. This can be explained by the fact that

the dual optimization is both small and independent of the size of the input problem

(in this case, 6n = 8460). This enables the dual solver (MLR-ADMM) to spend the

majority of its time operating in a small region of memory (thereby exploiting cache

locality), whereas the primal solver (MLR-Proj) performs gradient updates over a large

set of variables.

4.5 Conclusion

We have developed an efficient training procedure for structural metric learning.

The proposed method exploits the low-dimensional structure of the dual problem, and in
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Figure 4.4: Performance of MLR-ADMM and MLR-Proj for music similarity. Top:

accuracy versus the number of projections onto Sd+ as the number of ADMM steps T

is increased. Bottom: average number of cutting planes required for each value of T .

Results are averaged across ten splits; error bars correspond to ±1 standard deviation.
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Table 4.1: Test-set performance and training time for diagonal multiple kernel projec-

tion on Graz-02.

Algorithm Error Time (s)

MLR-ADMM T = 001 6.1% 105.51

MLR-ADMM T = 005 6.5% 27.58

MLR-ADMM T = 010 5.9% 22.05

MLR-ADMM T = 025 6.0% 14.55

MLR-Proj 5.3% 442.43

most cases, reduces by at least a factor of 10 the number of expensive spectral decompo-

sition operations, resulting in substantial reductions in training time over the projected

sub-gradient method.

4.A Derivation of eq. (4.11)

Equation (4.9) depends on W in three terms, which we treat separately here via

eq. (4.10). We present the derivation for the linear case here, but the multiple kernel

case follows analogously. Substituting eq. (4.10) into each term of eq. (4.9) yields

〈
W, I

〉
F

=
〈
Rt, I

〉
F

+
m∑
i=1

αi
ρ
〈Ψi, I〉F −

1

ρ
〈I, I〉F ,

ρ

2

∥∥W −Rt
∥∥2

F
=

1

2ρ
〈I, I〉F −

1

ρ

m∑
i=1

αi 〈I,Ψi〉F +
1

2ρ
αTHα,

∑
i=1

αi
〈
W,Ψi

〉
F

=
m∑
i=1

αi

〈
Rt − 1

ρ
I,Ψi

〉
F

+
1

ρ
αTHα.
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Substituting the above into eq. (4.9) yields

sup
α∈Rm+
β∈R+

inf
W,ξ
L(W, ξ, α, β) = sup

α∈Rm+
L
(
W, ξ, α, β

)
(4.16)

= max
α∈Rm+

− 1

2ρ
αTHα− 1

ρ
bTα,

where H, b are defined as in eqs. (4.12) and (4.13). Finally, differentiating eq. (4.9) with

respect to ξ yields the constraint

∇ξL(W, ξ, α, β) = C − β − 1Tα = 0

⇒ C − β = 1Tα ≤ C

which when combined with eq. (4.16), yields eq. (4.11).

4.B Axis-aligned learning

To learn an axis-aligned transformation (i.e., feature weighting), we can refor-

mulate eq. (4.1) by replacing W ∈ Sd+ with vector w ∈ Rd
+ such that W = diag(w).

Similarly, the regularization term 〈W, I〉F is replaced by the equivalent penalty 1Tw.

The ADMM algorithm proceeds much as before, except that the variables are

now vectors w, z, u ∈ Rd, rather than symmetric matrices. It is straightforward to de-

rive the diagonally-constrained optimization problem and KKT conditions, the result of

which is

w = z − u+
1

ρ

(
m∑
i=1

αi diag(Ψi)

)
− 1.

The diagonally-constrained structure kernel HD and cost vector bD are defined analo-

gously:

HD
ij
··= 〈diag(Ψi), diag(Ψj)〉,

bDi ··= 〈ρr − 1, diag(Ψi)〉 − ρ∆i,

and the dual problem is again equivalent to the form given in eq. (4.11). The updates are

similar to eqs. (4.5) and (4.7), and the z-step simplifies to thresholding:

zt+1 ← ΠRd+

[
wt+1 + ut

]
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which can be computed in O(d) time by thresholding at 0.

The diagonal and MKP formulations can be combined, so that each wk ∈ Rn
+

defines a weighting over X in the kth feature space. wk then takes the form:

wk = zk − uk +
1

ρ

(
m∑
i=1

αi diag(Ψk
i )

)
− diag(Kk).

HMD and bMD are similarly defined:

HMD
ij
··=

p∑
k=1

〈diag(Ψk
i ), diag(Ψk

j )〉,

bMD
i
··=

p∑
k=1

〈ρrk − diag(Kk), diag(Ψk
i )〉 − ρ∆i.



Chapter 5

Similarity from a collaborative filter

5.1 Introduction

An effective notion of similarity forms the basis of many applications involv-

ing multimedia data. For example, an online music store can benefit greatly from the

development of an accurate method for automatically assessing similarity between two

songs, which can in turn facilitate high-quality recommendations to a user by finding

songs which are similar to her previous purchases or preferences. More generally, high-

quality similarity can benefit any query-by-example recommendation system, wherein a

user presents an example of an item that she likes, and the system responds with, e.g., a

ranked list of recommendations.

The most successful approaches to a wide variety of recommendation tasks —

including not just music, but books, movies, etc.. — use collaborative filters (CF).

Systems based on collaborative filters exploit the “wisdom of crowds” to infer similari-

ties between items, and recommend new items to users by representing and comparing

these items in terms of the people who use them (Goldberg et al., 1992). Within the

domain of music information retrieval, recent studies have shown that CF systems con-

sistently outperform alternative methods for playlist generation (Barrington et al., 2009)

and semantic annotation (Kim et al., 2009). However, collaborative filters suffer from

the dreaded “cold start” problem: a new item cannot be recommended until it has been

purchased, and it is less likely to be purchased if it is never recommended. Thus, only a

tiny fraction of songs may be recommended, making it difficult for users to explore and

82
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Figure 5.1: Query-by-example recommendation engines allow a user to search for new

items by providing an example item. Recommendations are formed by computing the

most similar items to the query item from a database of potential recommendations.

discover new music (Celma, 2010).

The cold-start problem has motivated researchers to improve content-based rec-

ommendation systems. Content-based systems operate on music representations that are

extracted automatically from the audio content, eliminating the need for human feed-

back and annotation when computing similarity. While this approach naturally extends

to any item regardless of popularity, the construction of features and definition of simi-

larity in these systems are frequently ad-hoc and not explicitly optimized for the specific

task.

In this chapter, we propose a method for optimizing content-based audio similar-

ity by learning from a sample of collaborative filter data. Based on this optimized sim-

ilarity measure, recommendations can then be made where no collaborative filter data

is available. The proposed method treats similarity learning as an information retrieval

problem, where similarity is learned to optimize the ranked list of results in response to a

query example (fig. 5.1). Optimizing similarity for ranking requires more sophisticated

machinery than, e.g., genre classification for semantic search. However, the information

retrieval approach offers a few key advantages, which we argue are crucial for realis-

tic music applications. First, there are no assumptions of transitivity or symmetry in the

proposed method. This allows, for example, that “The Beatles” may be considered a rel-
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evant result for “Oasis”, but not vice versa. Second, CF data can be collected passively

from users by mining their listening histories, thereby directly capturing their listening

habits. Finally, optimizing similarity for ranking directly attacks the main quantity of

interest: the ordered list of retrieved items, rather than coarse abstractions of similarity,

such as genre agreement.

5.1.1 Related work

Early studies of musical similarity followed the general strategy of first devising

a model of audio content (e.g., spectral clusters (Logan and Salomon, 2001), Gaussian

mixture models (Aucouturier and Pachet, 2002), or latent topic assignments (Hoffman

et al., 2008)), applying some reasonable distance function (e.g., earth-mover’s distance

or Kullback-Leibler divergence), and then evaluating the proposed similarity model

against some source of ground truth. Logan and Salomon (2001) and Aucouturier and

Pachet (2002) evaluated against three notions of similarity between songs: same artist,

same genre, and human survey data. Artist or genre agreement entail strongly binary no-

tions of similarity, which due to symmetry and transitivity may be unrealistically coarse

in practice. Survey data can encode subtle relationships between items, for example,

triplets of the form “A is more similar to B than to C” (Aucouturier and Pachet, 2002,

Ellis et al., 2002, Berenzweig et al., 2004). However, the expressive power of human

survey data comes at a cost: while artist or genre meta-data is relatively inexpensive

to collect for a set of songs, similarity survey data may require human feedback on a

quadratic (for pairwise ratings) or cubic (for triplets) number of comparisons between

songs, and is thus impractical for large data sets.

Later work in musical similarity approaches the problem in the context of super-

vised learning: given a set of training items (songs), and some knowledge of similarity

across those items, the goal is to learn a similarity (distance) function that can predict

pairwise similarity. Slaney et al. (2008) derive similarity from web-page co-occurrence,

and evaluate several supervised and unsupervised algorithms for learning distance met-

rics. In chapter 2, we developed a metric learning algorithm for triplet comparisons as

described above. The method proposed in this chapter follows in this line of work, but is

designed to optimize structured ranking loss using the algorithm developed in chapter 3
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(not just binary or triplet predictions), and uses a collaborative filter as the source of

ground truth.

The idea to learn similarity from a collaborative filter follows from a series of

positive results in music applications. Slaney and White (2007) demonstrate that an

item-similarity metric derived from rating data matches human perception of similar-

ity better than a content-based method. Similarly, it has been demonstrated that when

combined with metric learning, collaborative filter similarity can be as effective as se-

mantic tags for predicting survey data (chapter 2). Kim et al. (2009) demonstrated that

collaborative filter similarity vastly out-performs content-based methods for predicting

semantic tags. Barrington et al. (2009) conducted a user survey, and concluded that

the iTunes Genius playlist algorithm (which is at least partially based on collaborative

filters1) produces playlists of equal or higher quality than competing methods based on

acoustic content or meta-data.

Finally, there has been some previous work addressing the cold-start problem

of collaborative filters for music recommendation by integrating audio content. Yoshii

et al. (2008) formulate a joint probabilistic model of both audio content and collabora-

tive filter data in order to predict user ratings of songs (using either or both represen-

tations), whereas our goal here is to use audio data to predict the similarities derived

from a collaborative filter. Our problem setting is most similar to that of Stenzel and

Kamps (2005), wherein a CF matrix was derived from playlist data, clustered into latent

“pseudo-genres,” and classifiers were trained to predict the cluster membership of songs

from audio data. Our proposed setting differs in that we derive similarity at the user

level (not playlist level), and automatically learn the content-based song similarity that

directly optimizes the primary quantity of interest in an information retrieval system:

the quality of the rankings it induces.

5.1.2 Contributions

Our primary contribution in this chapter is a framework for improving content-

based audio similarity by learning from a sample of collaborative filter data. Toward

this end, we first develop a method for deriving item similarity from a sample of col-

1http://www.apple.com/pr/library/2008/09/09itunes.html

http://www.apple.com/pr/library/2008/09/09itunes.html
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laborative filter data. We then use the sample similarity to train an optimal distance

metric over audio descriptors. More precisely, a distance metric is optimized to pro-

duce high-quality rankings of the training sample in a query-by-example setting. The

resulting distance metric can then be applied to previously unseen data for which collab-

orative filter data is unavailable. Experimental results verify that the proposed methods

significantly outperform competing methods for content-based music retrieval.

5.2 Learning similarity

The main focus of this chapter is the following information retrieval problem:

given a query song q, return a ranked list from a database X of n songs ordered by

descending similarity to q. In general, the query may be previously unseen to the system,

but X will remain fixed across all queries. We will assume that each song is represented

by a vector in Rd, and similarity is computed by Euclidean distance. Thus, for any query

q, a natural ordering of x ∈ X is generated by sorting according to increasing distance

from q: ‖q − x‖.
Given some side information describing the similarity relationships between

items of X , distance-based ranking can be improved by applying a metric learning al-

gorithm. Rather than rely on native Euclidean distance, the learning algorithm produces

a matrix W ∈ Sd+ which characterizes an optimized distance:

‖q − x‖W =
√

(q − x)TW (q − x). (5.1)

In order to learn W , we will apply the metric learning to rank (MLR) algorithm (chap-

ter 3). At a high level, MLR optimizes the distance metric W on X , i.e., so that W

generates optimal rankings of songs in X when using each song q ∈ X as a query. To

apply the algorithm, we must provide a set of similar songs x ∈ X for each training

query q ∈ X . This is achieved by leveraging the side information that is available for

items in X . More specifically, we will derive a notion of similarity from collaborative

filter data on X . So, the proposed approach optimizes content-based audio similarity by

learning from a sample of collaborative filter data.
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5.2.1 Collaborative filters

The term collaborative filter (CF) is generally used to denote to a wide variety of

techniques for modeling the interactions between a set of items and a set of users (Gold-

berg et al., 1992, Sarwar et al., 2001). Often, these interactions are modeled as a (typi-

cally sparse) matrix F where rows represent the users, and columns represent the items.

The entry Fij encodes the interaction between user i and item j.

The majority of work in the CF literature deals with F derived from explicit

user feedback, e.g., 5-star ratings (Slaney and White, 2007, Yoshii et al., 2008). While

rating data can provide highly accurate representations of user-item affinity, it also has

drawbacks, especially in the domain of music. First, explicit ratings require active par-

ticipation on behalf of users. This may be acceptable for long-form content such as

films, in which the time required for a user to rate an item is miniscule relative to the

time required to consume it. However, for short-form content (e.g., songs), it seems

unrealistic to expect a user to rate more than a small fraction of the items consumed.

Second, the scale of rating data is often arbitrary, skewed toward the extremes (e.g., 1-

and 5-star ratings), and may require careful calibration to use effectively (Slaney and

White, 2007).

Alternatively, CF data can also be derived from implicit feedback. While some-

what noisier on a per-user basis than explicit feedback, implicit feedback can be derived

in much higher volumes by simply counting how often a user interacts with an item (e.g.,

listens to an artist) (Deshpande and Karypis, 2004, Hu et al., 2008). Implicit feedback

differs from rating data, in that it is positive and unbounded, and it does not facilitate

explicit negative feedback. As suggested by Hu et al. (2008), binarizing an implicit

feedback matrix by thresholding can provide an effective mechanism to infer positive

associations.

In a binary CF matrix F , each column Fj can be interpreted as a bag-of-users

representation of item j. Of central interest in this chapter is the similarity between

items (i.e., columns of F ). We define the similarity between two items i, j as the Jaccard
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index (Jaccard, 1901) of their user sets:

S(i, j) ··=
|Fi ∩ Fj|
|Fi ∪ Fj|

=
FT
i Fj

|Fi|+ |Fj| − FT
i Fj

, (5.2)

which counts the number of users shared between items i and j, and normalizes by the

total number of users of i and j combined.

Equation (5.2) defines a quantitative metric of similarity between two items.

However, for information retrieval applications, we are primarily interested in the most

similar (relevant) items for any query. We therefore define the relevant set X+
q for any

item q as the top k most similar items according to eq. (5.2), i.e., those items which

a user of the system would be shown first. Although binarizing similarity in this way

does simplify the notion of relevance, it still provides a flexible language for encoding

relationships between items. Note that after thresholding, transitivity and symmetry are

not enforced, so it is possible, e.g., for The Beatles to be relevant for Oasis but not vice

versa. Consequently, we will need a learning algorithm which can support such flexible

encodings of relevance.

5.3 Audio representation

In order to compactly summarize audio signals, we represent each song as a his-

togram over a dictionary of timbral codewords. This general strategy has been proven

effective in computer vision applications (Fei-Fei and Perona, 2005), as well as au-

dio and music classification (Sundaram and Narayanan, 2008, Seyerlehner et al., 2008,

Hoffman et al., 2009). The efficiency and ease of implementation of the codeword his-

togram approach makes it an attractive choice for audio representation.

As a first step, a codebook is constructed by clustering a large collection of fea-

ture descriptors (section 5.3.1). Once the codebook has been constructed, each song is

summarized by aggregating vector quantization (VQ) representations across all frames

in the song, resulting in codeword histograms (section 5.3.2). Finally, histograms are

represented in a non-linear kernel space to facilitate better learning with MLR (sec-

tion 5.3.3).
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5.3.1 Codebook training

Our general approach to constructing a codebook for vector quantization is to

aggregate audio feature descriptors from a large pool of songs into a single bag-of-

features, which is then clustered to produce the codebook.

For each song x in the codebook training set XC — which may generally be

distinct from the MLR training set X — we compute the first 13 Mel frequency cep-

stral coefficients (MFCCs) (Rabiner and Juang, 1993) from each half-overlapping 23ms

frame. From the time series of MFCC vectors, we compute the first and second in-

stantaneous derivatives, which are concatenated to form a sequence of 39-dimensional

dynamic MFCC (∆MFCC) vectors (Buchanan, 1995). These descriptors are then ag-

gregated across all x ∈ XC to form an unordered bag of features Z.

To correct for changes in scale across different ∆MFCC dimensions, each vector

z ∈ Z is normalized according to the sample mean µ ∈ R39 and standard deviation

σ ∈ R39 estimated from Z. Each sample z is transformed accordingly:

z 7→ diag(σ)−1(z − µ). (5.3)

The normalized ∆MFCC vectors are then clustered into a set V of codewords by k-

means. (Specifically, an online variant of Hartigan’s method (Hartigan, 1975) described

in appendix B).

5.3.2 (Top-τ ) Vector quantization

Once the codebook V has been constructed, a song x is represented as a his-

togram hx over the codewords in V . This proceeds in three steps:

1. a bag-of-features is computed from x’s ∆MFCCs, denoted as x = { xi } ⊂ R39;

2. each xi ∈ x is normalized according to eq. (5.3);

3. the codeword histogram is constructed by counting the frequency with which each
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Figure 5.2: Two close data points x1, x2 (+) and the Voronoi partition for three VQ

codewords v1, v2, v3 (�). Left: hard VQ (τ = 1) assigns similar data points to dissimilar

histograms. Right: assigning each data point to its top τ = 2 codewords reduces noise

in codeword histogram representations.

codeword v ∈ V quantizes an element of x:2

[hx]v ··=
1

|x|
∑
xi∈x

s
v = argmin

u∈V
‖xi − u‖

{
. (5.4)

Codeword histograms are normalized by the number of frames |x| in the song in order to

ensure comparability between songs of different lengths; hx may therefore be interpreted

as a multinomial distribution over codewords.

Equation (5.4) derives from the standard notion of vector quantization (VQ)

where each vector (e.g., data point xi) is replaced by its closest quantizer. However, VQ

can become unstable when a vector has multiple, (approximately) equidistant quantizers

(fig. 5.2, left), which is more likely to happen as the size of the codebook increases.

To counteract quantization errors, we generalize eq. (5.4) to support multiple

quantizers for each vector. For a vector xi, a codebook V , and a quantization threshold

τ ∈ { 1, 2, . . . , | V| }, we define the quantization set

argmin
u∈V

τ‖xi − u‖ ··= { u is a τ -nearest neighbor of xi } .

The top-τ codeword histogram for a song x is then constructed as

[hτx]v ··=
1

|x|
∑
xi∈x

1

τ

s
v ∈ argmin

u∈V

τ‖xi − u‖
{
. (5.5)

2To simplify notation, we denote by [hx]v the bin of histogram hx corresponding to the codeword
v ∈ V . Codewords are assumed to be unique, and the usage should be clear from context.



91

Intuitively, eq. (5.5) assigns 1/τ mass to each of the τ closest codewords for each xi ∈ x
(fig. 5.2, right). Note that when τ = 1, eq. (5.5) reduces to eq. (5.4). The normalization

by 1/τ ensures that
∑

v[h
τ
x]v = 1, so that for τ > 1, hτx retains its interpretation as a

multinomial distribution over V .

It should be noted that top-τ is by no means the only way to handle over-

quantization errors. In particular, the hierarchical Dirichlet process (HDP) method pro-

posed by Hoffman et al. (2008) addresses the quantization error problem (by using a

probabilistic encoding), as well as the issue of determining the size of the codebook, and

could easily be substituted into our framework. However, as demonstrated in section 5.4,

algorithm 3.1 adequately compensates for these effects. For the sake of simplicity and

ease of reproducibility, we opted here to use the top-τ method.

5.3.3 Histogram representation and distance

After summarizing each song x by a codeword histogram hτx, these histograms

may be interpreted as vectors in R|V|. Subsequently, for a query song q, retrieval may be

performed by ordering x ∈ X according to increasing (Euclidean) distance ‖hτq − hτx‖.
After optimizing W with algorithm 3.1, the same codeword histogram vectors may be

used to perform retrieval with respect to the learned metric ‖hτq − hτx‖W .

However, treating codeword histograms directly as vectors in a Euclidean space

ignores the simplicial structure of multinomial distributions. To better exploit the ge-

ometry of codeword histograms, we represent each histogram in a probability product

kernel (PPK) space (Jebara et al., 2004). Inner products in this space can be computed

by evaluating the corresponding kernel function k. For PPK space, k is defined as:

k(hτq , h
τ
x) ··=

∑
v∈V

√
[hτq ]v · [hτx]v. (5.6)

The PPK inner product in eq. (5.6) is equivalent to the Bhattacharyya coefficient (Bhat-

tacharyya, 1943) between hτq and hτx. Consequently, distance in PPK space induces the

same rankings as Hellinger distance between histograms.

Typically in kernel methods, data is represented implicitly in a (typically high-

dimensional) Hilbert space via the n × n matrix of inner products between training

points, i.e., the kernel matrix (Schölkopf and Smola, 2002). This representation enables
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efficient learning, even when the dimensionality of the kernel space is much larger than

the number of points (e.g., for histogram-intersection kernels (Barla et al., 2003)) or

infinite (e.g., radial basis functions). The MLR algorithm has been extended to support

optimization of distances in such spaces by reformulating the optimization in terms of

the kernel matrix, and optimizing an n × n matrix W ∈ Sn+ (Galleguillos et al., 2011).

While kernel MLR supports optimization in arbitrary inner product spaces, it can be

difficult to scale up to large training sets (i.e., large n), and may require making some

simplifying approximations to scale up, e.g., restricting W to be diagonal.

However, for the present application, we can exploit the specific structure of

the probability product kernel (on histograms) and optimize distances in PPK space

with complexity that depends on |V| rather than n, thereby supporting larger training

sets. Note that PPK enables an explicit representation of the data according to a simple,

coordinate-wise transformation:

[hτx]v 7→
√

[hτx]v, (5.7)

which, since k(hτx, h
τ
x) = 1 for all hτx, can be interpreted as mapping the |V|-dimensional

simplex to the |V|-dimensional unit sphere. Training data may therefore be represented

as a |V| × n data matrix, rather than the n× n kernel matrix. As a result, we can equiv-

alently apply eq. (5.7) to the data, and learn a |V| × |V| matrix W with algorithm 3.1,

which is more efficient than using kernel MLR when |V| < n, as is often the case in our

experiments. Moreover, the probability product kernel does not require setting hyper-

parameters (e.g., the bandwidth of a radial basis function kernel), and thus simplifies the

training procedure.

5.4 Experiments

Our experiments are designed to simulate query-by-example content-based re-

trieval of songs from a fixed database. Figure 5.3 illustrates the high-level experimental

setup: training and evaluation are conducted with respect to collaborative filter similarity

(as described in section 5.2.1). In this section, we describe the sources of collaborative

filter and audio data, experimental procedure, and competing methods against which we

compare.
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Figure 5.3: Schematic diagram of training and retrieval. Here, “training data” encom-

passes both the subset of X used to train the metric W , and the codebook set XC used

to build the codebook V . While, in our experiments, both sets are disjoint, in general,

data used to build the codebook may also be used to train the metric.

5.4.1 Data

Collaborative filter: Last.FM

Our collaborative filter data is provided by Last.fm,3 and was collected by Celma

(2010). The data consists of a users-by-artists matrix F of 359,347 unique users and

186,642 unique, identifiable artists; the entry Fij contains the number of times user i

listened to artist j. We binarize the matrix by thresholding at 10, i.e., a user must listen

to an artist at least 10 times before we consider the association meaningful.

Audio: CAL10K

For our audio data, we use the CAL10K data set (Tingle et al., 2010). Start-

ing from 10,832 songs by 4,661 unique artists, we first partition the set of artists into

those with at least 100 listeners in the binarized CF matrix (2015, the experiment set),
3http://www.last.fm/

http://www.last.fm/
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and those with fewer than 100 listeners (2646, the codebook set). We then restrict the

CF matrix to just those 2015 artists in the experiment set, with sufficiently many lis-

teners. From this restricted CF matrix, we compute the artist-by-artist similarity matrix

according to eq. (5.2).

Artists in the codebook set, with insufficiently many listeners, are held out from

the experiments in section 5.4.2, but their songs are used to construct four codebooks as

described in section 5.3.1. From each held out artist, we randomly select one song, and

extract a 5-second sequence of ∆MFCC vectors (431 half-overlapping 23ms frames at

22050Hz). These samples are collected into a bag-of-features of approximately 1.1 mil-

lion samples, which is randomly permuted, and clustered via online k-means in a single

pass to build four codebooks of sizes |V| ∈ { 256, 512, 1024, 2048 }, respectively. Clus-

ter centers are initialized to the first (randomly selected) k points. Note that only the

artists from the codebook set (and thus no artists from the experiment set) are used to

construct the codebooks. As a result, the previous four codebooks are fixed throughout

the experiments in the following section.

5.4.2 Procedure

For our experiments, we generate 10 random splits of the experiment set of 2015

artists into 40% training, 30% validation and 30% test artists.4 For each split, the set of

all training artist songs forms the training set, which serves as the database of “known”

songs, X . For each split, and for each (training/test/validation) artist, we then define the

relevant artist set as the top 10 most similar training5 artists. Finally, for any song q by

artist i, we define q’s relevant song set, X+
q , as all songs by all artists in i’s relevant artist

set. The songs by all other training artists, not in i’s relevant artist set, are collected into

X−q , the set of irrelevant songs for q. The statistics of the training, validation, and test

splits are collected in table 5.1.

For each of the four codebooks, constructed in the previous section, each song

4Due to recording artifacts and our definition of similarity, it is crucial to split at the level of artists
rather than songs (Whitman et al., 2001).

5Also for test and validation artists, we restrict the relevant artist set to the training artists to mimic the
realistic setting of retrieving “known” songs from X , given an “unknown” (test/validation) query.
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Table 5.1: Statistics of CAL10K data, averaged across ten random train-

ing/validation/test splits. # Relevant is the average number of relevant songs for each

training/validation/test song.

Training Validation Test

# Artists 806 604 605

# Songs 2122.3 ± 36.3 1589.3 ± 38.6 1607.5 ± 64.3

# Relevant 36.9 ± 16.4 36.4 ± 15.4 37.1 ± 16.0

was represented by a histogram over codewords using eq. (5.5), with

τ ∈ { 1, 2, 4, 8 } .

Codeword histograms were then mapped into PPK space by eq. (5.7). For comparison

purposes, we also experiment with Euclidean distance and MLR on the raw codeword

histograms.

To train the distance metric with algorithm 3.1, we vary

C ∈
{

10−2, 10−1, · · · , 109
}
.

We experiment with three ranking losses ∆ for training: area under the ROC curve

(AUC), which captures global qualities of the ranking, but penalizes mistakes equally

regardless of position in the ranking; normalized discounted cumulative gain (NDCG),

which applies larger penalties to mistakes at the beginning of the ranking than at the end,

and is therefore more localized than AUC; and mean reciprocal rank (MRR), which is

determined by the position of the first relevant result, and is therefore the most localized

ranking loss under consideration here. After learning W on the training set, retrieval is

evaluated on the validation set, and the parameter setting (C,∆) which achieves highest

AUC on the validation set is then evaluated on the test set.

To evaluate a metric W , the training set X is ranked according to distance from

each test (validation) song q under W , and we record the mean AUC of the rankings

over all test (validation) songs.

Prior to training with MLR, codeword histograms are compressed via principal

components analysis (PCA) to capture 95% of the variance as estimated on the training
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set. While primarily done for computational efficiency, this step is similar to the latent

perceptual indexing method described by Sundaram and Narayanan (2008), and may

also be interpreted as de-noising the codeword histogram representations. In preliminary

experiments, compression of codeword histograms was not observed to significantly

affect retrieval accuracy in either the native or PPK spaces (without MLR optimization).

5.4.3 Comparisons

To evaluate the performance of the proposed system, we compare to several

alternative methods for content-based query-by-example song retrieval: first, similarity

derived from comparing Gaussian mixture models of ∆MFCCs; second, an alternative

(unsupervised) weighting of VQ codewords; and third, a high-level, automatic semantic

annotation method. We also include a comparison to a manual semantic annotation

method (i.e., driven by human experts), which although not content-based, can provide

an estimate of an upper bound on what can be achieved by content-based methods. For

both manual and automatic semantic annotations, we will also compare to their MLR-

optimized counterparts.

Gaussian mixtures

From each song, a Gaussian mixture model (GMM) over its ∆MFCCs was esti-

mated via expectation-maximization (Dempster et al., 1977). Following Turnbull et al.

(2008), each song is represented by a GMM consisting of 8 components with diago-

nal covariance matrices.6 The training set X is therefore represented as a collection of

GMM distributions { px | x ∈ X }. This approach is representative of many previously

proposed systems in the music information retrieval literature (Aucouturier and Pachet,

2002, Berenzweig et al., 2004, Jensen et al., 2007), and is intended to serve as a baseline

against which we can compare the proposed VQ approach.

At test time, given a query song q, we first estimate its GMM pq. We would then

like to rank each x ∈ X by increasing Kullback-Leibler (KL) divergence (Kullback,

6In addition to yielding the best performance for the auto-tagger described by Turnbull et al. (2008),
8-component diagonal covariance GMMs yields audio representations of comparable space complexity
to the proposed VQ approach.



97

1968) from pq:

D(pq‖px) ··=
∫
pq(z) log

pq(z)

px(z)
dz. (5.8)

However, we do not have a closed-form expression for KL divergence between GMMs,

so we must resort to approximate methods. Several such approximation schemes have

been devised in recent years, including variational methods and sampling approaches

(Hershey and Olsen, 2007). Here, we opt for the Monte Carlo approximation:

D(pq‖px) ≈
m∑
i=1

1

m
log

pq(zi)

px(zi)
, (5.9)

where { zi }mi=1 is a collection of m independent samples drawn from pq. Although the

Monte Carlo approximation is considerably slower than closed-form approximations

(e.g., variational methods), with enough samples, it often exhibits higher accuracy (Her-

shey and Olsen, 2007, Jensen et al., 2007). Note that because we are only interested in

the rank-ordering of X given pq, it is equivalent to order each px ∈ X by increasing

(approximate) cross-entropy:

H(pq, px) ··=
∫
pq(z) log

1

px(z)
dz ≈

m∑
i=1

1

m
log

1

px(zi)
. (5.10)

For efficiency purposes, for each query q we fix the sample { zi }mi=1 ∼ pq across all

x ∈ X . We use m = 2048 samples for each query, which was found to yield stable

cross-entropy estimates in an informal, preliminary experiment.

TF-IDF

The algorithm described in chapter 3 is a supervised approach to learning an op-

timal transformation of feature descriptors (in this specific case, VQ histograms). Alter-

natively, it is common to use the natural statistics of the data in an unsupervised fashion

to transform the feature descriptors. As a baseline, we compare to the standard method

of combining term frequency–inverse document frequency (TF-IDF) (Salton and Buck-

ley, 1987) representations with cosine similarity, which is commonly used with both

text (Salton and Buckley, 1987) and codeword representations (Sivic and Zisserman,

2003).



98

Given a codeword histogram hτq , for each v ∈ V , [hτq ]v is mapped to its TF-IDF

value by7

[hτq ]v 7→ [hτq ]v · IDFv, (5.11)

where IDFv is computed from the statistics of the training set by8

IDFv ··= log
|X |

| { x ∈ X | xv > 0 } |
. (5.12)

Intuitively, IDFv assigns more weight to codewords v which appear in fewer songs,

and reduces the importance of codewords appearing in many songs. The training set

X is accordingly represented by TF-IDF vectors. At test time, each x ∈ X is ranked

according to decreasing cosine-similarity to the query q:

cos(hτq , h
τ
x) =

〈
hτq , h

τ
x

〉
‖hτq‖ · ‖hτx‖

. (5.13)

Automatic semantic tags

The proposed method relies on low-level descriptors to assess similarity between

songs. Alternatively, similarity may be assessed by comparing high-level content de-

scriptors in the form of semantic tags. These tags may include words to describe genre,

instrumentation, emotion, etc.. Because semantic annotations may not be available for

novel query songs, we restrict attention to algorithms which automatically predict tags

given only audio content.

In our experiments, we adapt the auto-tagging method proposed by Turnbull

et al. (2008). This method summarizes each song by a semantic multinomial distribution

(SMD) over a vocabulary of 149 tag words. Each tag t is characterized by a GMM

pt over ∆MFCC vectors, each of which was trained previously on the CAL500 data

set (Turnbull et al., 2007). A song q is summarized by a multinomial distribution sq,

where the tth entry is computed by the geometric mean of the likelihood of q’s ∆MFCC

vectors qi under pt:

[sq]t ∝

(∏
qi∈q

pt(qi)

)1/|q|

. (5.14)

7Since codeword histograms are pre-normalized, there is no need to re-compute the term frequency in
eq. (5.11).

8To avoid division by 0, we define IDFv ··= 0 for any codeword v which does not appear in the training
set.
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(Each SMD sq is normalized to sum to 1.) The training set X is thus described as a

collection of SMDs { sx | x ∈ X }. At test time, X is ranked according to increasing

distance from the test query under the probability product kernel9 as described in sec-

tion 5.3.3. This representation is also amenable to optimization by MLR, and we will

compare to retrieval performance after optimizing PPK representations of SMDs with

MLR.

Human tags

Our final comparison uses semantic annotations manually produced by humans,

and may be interpreted as an upper bound on the performance of automated content

analysis. Each song in CAL10K includes a partially observed, binary annotation vector

over a vocabulary of 1053 tags from the Music Genome Project.10 The annotation vec-

tors are weak in the sense that a 1 indicates that the tag applies, while a 0 indicates only

that the tag may not apply.

In our experiments, we observed the best performance by using cosine similarity

as the retrieval function, although we also tested TF-IDF and Euclidean distances. As in

the auto-tag case, we will also compare to tag vectors after optimization by MLR. When

training with MLR, annotation vectors were compressed via PCA to capture 95% of the

training set variance.

5.5 Results

Vector quantization

In a first series of experiments, we evaluate various approaches and configura-

tions based on VQ codeword histograms. Figure 5.4 lists the AUC achieved by four

different approaches (Native, TF-IDF, MLR, PPK-MLR), based on VQ codeword his-

tograms, for each of four codebook sizes and each of four quantization thresholds. We

9We also experimented with χ2-distance, `1, Euclidean, and (symmetrized) KL divergence, but PPK
distance was always statistically equivalent to the best-performing distance.

10http://www.pandora.com/mgp.shtml

http://www.pandora.com/mgp.shtml
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Figure 5.4: Retrieval accuracy with vector quantized ∆MFCC representations. Each

grouping corresponds to a different codebook size |V| ∈ { 256, 512, 1024, 2048 }. Each

point within a group corresponds to a different quantization threshold τ ∈ { 1, 2, 4, 8 }.
Error bars correspond to one standard deviation across trials.

observe that using Euclidean distance on raw codeword histograms11 (Native) yields

significantly higher performance for codebooks of intermediate size (512 or 1024) than

for small (256) or large (2048) codebooks. For the 1024 codebook, increasing τ results

in significant gains in performance, but it does not exceed the performance for the 512

codebook. The decrease in accuracy for |V| = 2048 suggests that performance is indeed

sensitive to overly large codebooks.

After learning an optimal distance metric with MLR on raw histograms (i.e., not

PPK representations) (MLR), we observe two interesting effects. First, MLR optimiza-

tion always yields significantly better performance than the native Euclidean distance.

Second, performance is much less sensitive to the choice of codebook size and quan-

tization threshold: all settings of τ for codebooks of size at least |V| ≥ 512 achieve

statistically equivalent performance.

Finally, we observe the highest performance by combining the PPK representa-

11For clarity, we omit the performance curves for native Euclidean distance on PPK representations, as
they do not differ significantly from the Native curves shown.
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Figure 5.5: The effective dimensionality of codeword histograms in PPK space, i.e., the

number of principal components necessary to capture 95% of the training set’s variance,

as a function of the quantization threshold τ . (The results reported in the figure are the

average effective dimension ± one standard deviation across trials.)

tion with MLR optimization (PPK-MLR). For |V| = 1024, τ = 1, the mean AUC score

improves from 0.680±0.006 (Native) to 0.808±0.005 (PPK-MLR). The effects of code-

book size and quantization threshold are diminished by MLR optimization, although

they are slightly more pronounced than in the previous case without PPK. We may then

ask: does top-τ VQ provide any benefit?

Figure 5.5 lists the effective dimensionality — the number of principal compo-

nents necessary to capture 95% of the training set’s variance — of codeword histograms

in PPK space as a function of quantization threshold τ . Although for the best-performing

codebook size |V| = 1024, each of τ ∈ { 1, 2, 4 } achieves statistically equivalent per-

formance, the effective dimensionality varies from 253.1 ± 6.0 (τ = 1) to 106.6 ± 3.3

(τ = 4). Thus, top-τ VQ can be applied to dramatically reduce the dimensionality of

VQ representations, which in turn reduces the number of parameters learned by MLR,

and therefore improves the efficiency of learning and retrieval, without significantly de-

grading performance.
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Figure 5.6: A t-SNE visualization of the optimized similarity space produced by

PPK+MLR on one training/test split of the data (|V| = 1024, τ = 1). Close-ups on

three peripheral regions reveal hip-hop (upper-right), metal (lower-left), and classical

(lower-right) genres.

Qualitative results

Figure 5.6 illustrates an example optimized similarity space produced by MLR

on PPK histogram representations, as visualized in two dimensions by t-SNE (van der

Maaten and Hinton, 2008). Even though the algorithm is never exposed to any explicit

semantic information, the optimized space does exhibit regions which seem to capture

intuitive notions of genre, such as hip-hop, metal, and classical.

Table 5.2 illustrates a few example queries and their top-5 closest results under

the Euclidean and MLR-optimized metric. The native space seems to capture similar-

ities due to energy and instrumentation, but does not necessarily match CF similarity.

The optimized space captures aspects of the audio data which correspond to CF similar-

ity, and produces playlists with more relevant results.

Comparison

Figure 5.4 lists the accuracy achieved by using TF-IDF weighting on codeword
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Figure 5.7: Comparison of VQ-based retrieval accuracy to competing methods. VQ

corresponds to a codebook of size V = 1024 with quantization threshold τ = 1. Tag-

based methods (red) use human annotations, and are not automatically derived from

audio content. Error bars correspond to one standard deviation across trials.

histograms. For all VQ configurations (i.e., for each codebook size and quantization

threshold) TF-IDF significantly degrades performance compared to MLR-based meth-

ods, which indicates that inverse document frequency may not be as an accurate pre-

dictor of salience in codeword histograms as in natural language (Salton and Buckley,

1987).

Figure 5.7 shows the performance of all other methods against which we com-

pare. First, we observe that raw SMD representations provide more accurate retrieval

than both the GMM approach and raw VQ codeword histograms (i.e., prior to optimiza-

tion by MLR). This may be expected, as previous studies have demonstrated superior

query-by-example retrieval performance when using semantic representations of multi-

media data (Rasiwasia et al., 2007, Barrington et al., 2007).

Moreover, SMD and VQ can be optimized by MLR to achieve significantly
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higher performance than raw SMD and VQ, respectively. The semantic representa-

tions in SMD compress the original audio content to a small set of descriptive terms,

at a higher level of abstraction. In raw form, this representation provides a more robust

set of features, which improves recommendation performance compared to matching

low-level content features that are often noisier. On the other hand, semantic represen-

tations are inherently limited by the choice of vocabulary and may prematurely discard

important discriminative information (e.g., subtle distinctions within sub-genres). This

renders them less attractive as starting point for a metric learning algorithm like MLR,

compared to less-compressed (but possibly noisier) representations, like VQ. Indeed,

the latter may retain more information for MLR to learn an appropriate similarity func-

tion. This is confirmed by our experiments: MLR improves VQ significantly more than

it does for SMD. As a result, MLR-VQ outperforms all other content-based methods in

our experiments.

Finally, we provide an estimate of an upper bound on what can be achieved

by automatic, content-based methods, by evaluating the retrieval performance when

using manual annotations (Tag in fig. 5.7): 0.834 ± 0.005 with cosine similarity, and

0.907±0.008 with MLR-optimized similarity. The improvement in accuracy for human

tags, when using MLR, indicates that even hand-crafted annotations can be improved

by learning an optimal distance over tag vectors. By contrast, TF-IDF on human tag

vectors decreases performance to 0.771±0.004, indicating that IDF does not accurately

model (binary) tag salience. The gap in performance between content-based methods

and manual annotations suggests that there is still room for improvement. Closing this

gap may require incorporating more complex features to capture rhythmic and structural

properties of music which are discarded by the simple timbral descriptors used here.

5.6 Conclusion

In this chapter, we have proposed a method for improving content-based au-

dio similarity by learning from a sample of collaborative filter data. Collaborative filters

form the basis of state-of-the-art recommendation systems, but cannot directly form rec-

ommendations or answer queries for items which have not yet been consumed or rated.
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By optimizing content-based similarity from a collaborative filter, we provide a simple

mechanism for alleviating the cold-start problem and extending music recommendation

to novel or less known songs.

By using implicit feedback in the form of user listening history, we can effi-

ciently collect high-quality training data without active user participation, and as a re-

sult, train on larger collections of music than would be practical with explicit feedback

or survey data. Our notion of similarity derives from user activity in a bottom-up fash-

ion, and obviates the need for coarse simplifications such as genre or artist agreement.

Our proposed top-τ VQ audio representation enables efficient and compact de-

scription of the acoustic content of music data. Combining this audio representation

with an optimized distance metric yields similarity calculations which are both efficient

to compute and substantially more accurate than competing content-based methods. The

proposed metric learning framework is robust with respect to the choice of codebook

size and VQ threshold τ , and yields stable performance over a broad range of VQ con-

figurations.

While in this chapter, our focus remains on music recommendation applications,

the proposed methods are quite general, and may apply to a wide variety of applications

involving content-based similarity, such as nearest-neighbor classification of audio sig-

nals.
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Chapter 6

Large-scale similarity search

6.1 Introduction

Nearest neighbor computations lie at the heart of many content-based music in-

formation retrieval problems, such as playlist generation (Logan, 2004, Cai et al., 2007),

classification and annotation (Slaney et al., 2008, Kim et al., 2009) and recommendation

(chapter 5). Typically, each item (e.g., song, clip, or artist) is represented as a point in

some high-dimensional space, e.g., Rd equipped with Euclidean distance or Gaussian

mixture models equipped with Kullback-Leibler divergence.

For large music databases, nearest neighbor techniques face an obvious lim-

itation: computing the distance from a query point to each element of the database

becomes prohibitively expensive. However, for many tasks, approximate nearest neigh-

bors may suffice. This observation has motivated the development of general-purpose

data structures which exploit metric structure to locate neighbors of a query in sub-linear

time (Bentley, 1975, Faloutsos and Lin, 1995, Datar et al., 2004).

In this chapter, we investigate the efficiency and accuracy of several modern

variants of KD-trees (Bentley, 1975) for answering nearest neighbor queries for musi-

cal content. As we will demonstrate, these spatial trees are simple to construct, and

can provide substantial improvements in retrieval time while maintaining satisfactory

performance.

107
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6.2 Related work

Content-based similarity search has received a considerable amount of attention

in recent years, but due to the obvious data collection barriers, relatively little of it has

focused on retrieval in large-scale collections.

Cai et al. (2007) developed an efficient query-by-example audio retrieval system

by applying locality sensitive hashing (LSH) (Datar et al., 2004) to a vector space model

of audio content. Although LSH provides strong theoretical guarantees on retrieval per-

formance in sub-linear time, realizing those guarantees in practice can be challenging.

Several parameters must be carefully tuned — the number of bins in each hash, the num-

ber of hashes, the ratio of near and far distances, and collision probabilities — and the

resulting index structure can become quite large due to the multiple hashing of each data

point. The implementation of Cai et al. (2007) scales to upwards of 105 audio clips, but

since their focus was on playlist generation, they did not report the accuracy of nearest

neighbor recall.

Schnitzer et al. (2009) developed a filter-and-refine system to quickly approx-

imate the Kullback-Leibler (KL) divergence between timbre models. Each song was

summarized by a multivariate Gaussian distribution over MFCC vectors, and mapped

into a low-dimensional Euclidean vector space via the FastMap algorithm (Faloutsos

and Lin, 1995), so that Euclidean distance approximates the symmetrized KL divergence

between song models. To retrieve nearest neighbors for a query song, the approximate

distances are computed from the query to each point in the database by a linear scan

(the filter step). The closest points are then refined by computing the full KL divergence

to the query. This approach exploits the fact that low-dimensional Euclidean distances

are much cheaper to compute than KL-divergence, and depending on the size of the

filter set, can produce highly accurate results. However, since the filter step computes

distance to the entire database, it requires O(n) work, and performance may degrade if

the database is too large to fit in memory.
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Figure 6.1: Spatial partition trees recursively split a data set X ⊂ Rd by projecting onto

a direction w ∈ Rd and splitting at the median b (dashed line), forming two disjoint

subsets X` and Xr.

6.3 Spatial trees

Spatial trees are a family of data structures which recursively bisect a data set

X ⊂ Rd of n points in order to facilitate efficient (approximate) nearest neighbor re-

trieval (Bentley, 1975, Uhlmann, 1991). The recursive partitioning of X results in a

binary tree, where each node t corresponds to a subset of the data Xt ⊆ X (fig. 6.1). At

the root of the tree lies the entire set X , and each node t defines a subset of its parent.

A generic algorithm to construct partition trees is listed as algorithm 6.1. The

set X ⊂ Rd is projected onto a direction wt ∈ Rd, and split at the median bt into subsets

X` and Xr: splitting at the median ensures that the tree remains balanced. This process

is then repeated recursively on each subset, until a specified tree depth δ is reached.

Spatial trees offer several appealing properties. They are simple to implement,

and require minimal parameter-tuning: specifically, only the maximum tree depth δ, and

the rule for generating split directions. Moreover, they are efficient to construct and use

for retrieval. While originally developed for use in metric spaces, the framework has

been recently extended to support general Bregman divergences (including, e.g., KL-
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Algorithm 6.1 Spatial partition tree

Input: data X ⊂ Rd, maximum tree depth δ

Output: balanced binary tree t over X
PARTITION(X , δ)

1: if δ = 0 then

2: return X (leaf set) � base case

3: else

4: wt ← split(X ) � find a split direction

5: bt ← median
({
wT
t x
∣∣ x ∈ X }) � compute splitting threshold

6: X` ←
{
x
∣∣ wT

t x ≤ bt, x ∈ X
}

� partition X
7: Xr ←

{
x
∣∣ wT

t x > bt, x ∈ X
}

8: t` ← PARTITION(X`, δ − 1) � recursively build sub-trees

9: tr ← PARTITION(Xr, δ − 1)

10: return t ··= (wt, bt, t`, tr)

11: end if

divergence) (Cayton, 2008). However, for the remainder of this chapter, we will focus

on building trees for vector space models (Rd with Euclidean distance).

In order for algorithm 6.1 to be fully specified, we must provide a function

split(X ) which determines the split direction w. Several splitting rules have been pro-

posed in the literature, and our experiments will cover the four described by Verma

et al. (2009): maximum variance KD, principal direction (PCA), 2-means, and random

projection.

6.3.1 Maximum variance KD-tree

The standard KD-tree (k-dimensional tree) chooses w by cycling through the

standard basis vectors ei (i ∈ { 1, 2, . . . , d }), so that at level j in the tree, the split di-

rection is w ··= ei+1 with i··=j mod d (Bentley, 1975). The standard KD-tree can be

effective for low-dimensional data, but it is known to perform poorly in high dimen-

sions (Reiss et al., 2001, Verma et al., 2009). Note also that if n < 2d, there will not

be enough data to split along every coordinate, so some (possibly informative) features
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may never be used by the data structure.

A common fix to this problem is to choose w as the coordinate which maximally

spreads the data (Verma et al., 2009):

splitKD(X ) ··= argmax
ei

∑
x∈X

(
eTi (x− µ)

)2
, (6.1)

where µ is the sample mean vector of X . Intuitively, this split rule picks the coordinate

which provides the greatest reduction in variance (increase in concentration).

The maximum variance coordinate can be computed with a single pass over X
by maintaining a running estimate of the mean vector and coordinate-wise variance, so

the complexity of computing splitKD(X ) is O(dn).

6.3.2 PCA-tree

The KD split rule (eq. (6.1)) is limited to axis-parallel directionsw. The principal

direction (or principal components analysis, PCA) rule generalizes this to choose the

direction w ∈ Rd which maximizes the variance, i.e., the leading eigenvector v of the

sample covariance matrix Σ̂:

splitPCA(X ) ··= argmax
v

vTΣ̂v s. t. ‖v‖2 = 1. (6.2)

By using the full covariance matrix to choose the split direction, the PCA rule may be

more effective than KD-tree at reducing the variance at each split in the tree.

Σ̂ can be estimated from a single pass over X , so (assuming n > d) the time

complexity of splitPCA is O(d2n).

6.3.3 2-means

Unlike the KD and PCA rules, which try to maximally reduce variance with each

split, the 2-means rule produces splits which attempt preserve cluster structure. This is

accomplished by running the k-means algorithm on X with k = 2, and defining w to be

the direction spanned by the cluster centroids c1, c2 ∈ Rd:

split2M(X ) ··= c1 − c2. (6.3)
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While this general strategy performs well in practice (Liu et al., 2005), it can be costly to

compute a full k-means solution. In our experiments, we instead use an online k-means

variant which runs in O(dn) time (appendix B).

6.3.4 Random projection

The final splitting rule we will consider is to simply take a direction uniformly

at random from the unit sphere Sd−1:

splitRP(X ) ∼U Sd−1, (6.4)

which can equivalently be computed by normalizing a sample from the multivariate

Gaussian distribution N (0, Id). The random projection rule is simple to compute and

adapts to the intrinsic dimensionality of the data X (Dasgupta and Freund, 2008).

In practice, the performance of random projection trees can be improved by

independently samplingm directions wi ∼ Sd−1, and returning the wi which maximizes

the decrease in data diameter after splitting (Verma et al., 2009). Since a full diameter

computation would take O(dn2) time, we instead return the direction which maximizes

the projected diameter:

argmax
wi

max
x1,x2∈X

wT
i x1 − wT

i x2. (6.5)

This can be computed in a single pass over X by tracking the maximum and minimum

of wT
i x in parallel for all wi, so the time complexity of splitRP is O(mdn). Typically,

m ≤ d, so splitRP is comparable in complexity to splitPCA.

6.3.5 Spill trees

The main drawback of partition trees is that points near the decision boundary

become isolated from their neighbors across the partition. Because data concentrates

near the mean after (random) projection (Dasgupta and Freund, 2008), hard partitioning

can have detrimental effects on nearest neighbor recall for a large percentage of queries.

Spill trees remedy this problem by allowing overlap between the left and right

sub-trees (Liu et al., 2005). If a point lies close to the median, then it will be added
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Figure 6.2: Spill trees recursively split data like partition trees, but the subsets are

allowed to overlap. Points in the shaded region are propagated to both sub-trees.

to both sub-trees, thus reducing the chance that it becomes isolated from its neighbors

(fig. 6.2). This is accomplished by maintaining two decision boundaries b`t and brt . If

wT
t x > brt , then x is added to the right tree, and if wT

t x ≤ b`t , it is added to the left. The

gap between b`t and brt controls the amount of data which spills across the split.

The algorithm to construct a spill tree is listed as algorithm 6.2. The algorithm

requires a spill threshold τ ∈ [0, 1/2): rather than splitting at the median (so that a set

of n items is split into subsets of size roughly n/2), the data is split at the (1/2 + τ)-

quantile, so that each subset has size roughly n(1/2 + τ). Note that when τ = 0, the

thresholds coincide (b`t = brt ), and the algorithm simplifies to algorithm 6.1. Partition

trees, therefore, correspond to the special case of τ = 0.

6.3.6 Retrieval algorithm and analysis

Once a spill tree has been constructed, approximate nearest neighbors can be

recovered efficiently by the defeatist search method (Liu et al., 2005), which restricts

the search to only the leaf sets which contain the query. For a novel query q ∈ Rd (i.e.,

a previously unseen point), these sets can be found by algorithm 6.3.

The total time required to retrieve k neighbors for a novel query q can be com-

puted as follows. First, note that for a spill tree with threshold τ , each split reduces the
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Algorithm 6.2 Spill tree

Input: data X ⊂ Rd, depth δ, threshold τ ∈ [0, 1/2)

Output: τ -spill tree t over X
SPILL(X , δ, τ)

1: if δ = 0 then

2: return X (leaf set) � base case

3: else

4: wt ← split(X ) � find a split direction

5: b`t ← quantile
(

1/2 + τ,
{
wT
t x
∣∣ x ∈ X }) � compute thresholds

6: brt ← quantile
(

1/2− τ,
{
wT
t x
∣∣ x ∈ X })

7: X` ←
{
x
∣∣ wT

t x ≤ b`t, x ∈ X
}

� split X with spilling

8: Xr ←
{
x
∣∣ wT

t x > brt , x ∈ X
}

9: t` ← SPILL(X`, δ − 1, τ) � recursively build sub-trees

10: tr ← SPILL(Xr, δ − 1, τ)

11: return t ··= (wt, b
`
t, b

r
t , t`, tr)

12: end if

size of the set by a factor of (1/2 + τ), so the leaf sets of a depth-δ tree are exponentially

small in δ: n(1/2 + τ)δ. Note that δ ≤ log n, and is typically chosen so that the leaf set

size lies in some reasonable range (e.g., between 100 and 1000 items).

Next, observe that in general, algorithm 6.3 may map the query q to some h

distinct leaves, so the total size of the retrieval set is at most n′ = hn(1/2 + τ)δ (although

it may be considerably smaller if the sets overlap). For h leaves, there are at most h

paths of length δ to the root of the tree, and each step requires O(d) work to compute

wT
t q, so the total time taken by algorithm 6.3 is

TRETRIEVE ∈ O
(
h
(
dδ + n(1/2 + τ)δ

))
.

Finally, once the retrieval set has been constructed, the k closest points can be

found in time O(dn′ log k) by using a k-bounded priority queue (Cormen et al., 2009).

The total time to retrieve k approximate nearest neighbors for the query q is therefore

TkNN ∈ O
(
hd
(
δ + n(1/2 + τ)δ log k

))
.
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Algorithm 6.3 Spill tree retrieval
Input: query q, tree t

Output: Retrieval set Xq
RETRIEVE(q, t)

1: if t is a leaf then

2: return Xt � all items contained in the leaf

3: else

4: Xq ← ∅
5: if wT

t q ≤ b`t then

6: Xq ← Xq ∪ RETRIEVE(q, t`) � does q belong to left sub-tree?

7: end if

8: if wT
t q > brt then

9: Xq ← Xq ∪ RETRIEVE(q, tr) � does q belong to right sub-tree?

10: end if

11: return Xq
12: end if

Intuitively, for larger values of τ , more data is spread throughout the tree, so the

leaf sets become larger and retrieval becomes slower. Similarly, larger values of τ will

result in larger values of h as queries will map to more leaves. However, as we will

show experimentally, this effect is generally mild even for relatively large values of τ .

In the special case of partition trees (τ = 0), each query maps to exactly h = 1

leaf, so the retrieval time simplifies to O(d(δ + n/2δ log k)).

6.4 Experiments

Our song data was taken from the Million Song Dataset (MSD) (Bertin-Mahieux

et al., 2011). Before describing the tree evaluation experiments, we will briefly summa-

rize the process of constructing the underlying acoustic feature representation.
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6.4.1 Audio representation

The audio content representation was developed on the 1% Million Song Subset

(MSS), and follows the basic pipeline described in chapter 5. From each MSS song,

we extracted the time series of Echo Nest timbre descriptors (ENTs). This results in

a sample of approximately 8.5 million 12-dimensional ENTs, which were normalized

by z-scoring according to the estimated mean and variance of the sample, randomly

permuted, and then clustered by online k-means (appendix B) to yield 512 acoustic

codewords. Each song was summarized by quantizing each of its (normalized) ENTs

and counting the frequency of each codeword, resulting in a 512-dimensional histogram

vector. Each codeword histogram was mapped into a probability product kernel (PPK)

space (Jebara et al., 2004) by square-rooting its entries, which has been demonstrated

to be effective on similar audio representations (chapter 5). Finally, we appended the

song’s tempo, loudness, and key confidence, resulting in a vector vi ∈ R515 for each

song xi.

Next, we trained an optimized similarity metric over audio descriptors. First, we

computed target similarity for each pair of MSS artists by the Jaccard index between

their user sets in a sample of Last.fm1 collaborative filter data (Celma, 2010, chapter 3).

Tracks by artists with fewer than 30 listeners were discarded. Next, all remaining artists

were partitioned into a training (80%) and validation (20%) set, and for each artist, we

computed its top 10 most similar training artists.

Having constructed a training and validation set, the distance metric was opti-

mized by applying the metric learning to rank (MLR) algorithm (algorithm 3.1) on the

training set of 4455 songs, and tuning parameters C ∈ { 105, 106, . . . , 109 } and

∆ ∈ { AUC,MRR,MAP,Prec@10 }

to maximize AUC score on the validation set of 1110 songs. Finally, the resulting metric

W was factored by PCA (retaining 95% spectral mass) to yield a linear projection L ∈
R222×515.

The projection matrix L was then applied to each vi in MSD. As a result, each

MSD song was mapped into R222 such that Euclidean distance is optimized by MLR to

1http://last.fm

http://last.fm


117

retrieve songs by similar artists.

6.4.2 Representation evaluation

To verify that the optimized vector quantization (VQ) song representation car-

ries musically relevant information, we performed a small-scale experiment to evaluate

its predictive power for semantic annotation. We randomly selected one song from

each of 4643 distinct artists. (Artists were restricted to be disjoint from MSS to avoid

contamination.) Each song was represented by the optimized 222-dimensional VQ rep-

resentation, and as ground truth annotations, we applied the corresponding artist’s terms

from the top-300 terms provided with MSD, so that each song xi has a binary annotation

vector yi ∈ { 0, 1 }300. For a baseline comparison, we adapt the representation used by

Schnitzer et al. (2009), and for each song, we fit a full-covariance Gaussian distribution

over its ENT features.

The set was then randomly split 10 times into 80%-training and 20%-test sets.

Following the procedure described by Kim et al. (2009), each test song was annotated

by thresholding the average annotation vector of its k nearest training neighbors as de-

termined by Euclidean distance on VQ representations, and by KL-divergence on Gaus-

sians. Varying the decision threshold yields a trade-off between precision and recall. In

our experiments, the threshold was varied between 0.1 and 0.9.

Figure 6.3 displays the precision-recall curves averaged across all 300 terms and

training/test splits for several values of k. At small values of k, the VQ representation

achieves significantly higher performance than the Gaussian representation. We note

that this evaluation is by no means conclusive, and is merely meant to demonstrate that

the underlying space is musically relevant.

6.4.3 Tree evaluation

To test the accuracy of the different spatial tree algorithms, we partitioned the

MSD data into 890205 training songs X and 109795 test songs X ′. Using the optimized

VQ representations on X , we constructed trees with each of the four splitting rules

(PCA, KD, 2-means, and random projection), varying both the maximum depth δ ∈
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Figure 6.3: Mean precision-recall for k-nearest neighbor annotation with VQ and Gaus-

sian (KL) representations.

{ 5, 6, . . . , 13 } and spill threshold τ ∈ { 0, 0.01, 0.05, 0.10 }. At δ = 13, this results in

leaf sets of size 109 with τ = 0, and 1163 for τ = 0.10. For random projection trees,

we sample m = 64 dimensions at each call to splitRP.

For each test song q ∈ X ′, and tree t, we compute the retrieval set with algo-

rithm 6.3. The recall for q is the fraction of the true nearest-neighbors kNN(q) contained

in the retrieval set:

R(q, t) ··=
1

k
|RETRIEVE(q, t) ∩ kNN(q)| . (6.6)

Note that since true nearest neighbors are always closer than any other points, they are

always ranked first, so precision and recall are equivalent here.

To evaluate the system, k = 100 exact nearest neighbors kNN(q) were found

from X for each query q ∈ X ′ by a full linear search over X .
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Figure 6.4: Median 100-nearest-neighbor recall for each splitting rule, spill threshold

τ , and tree depth δ ∈ { 5, 6, . . . , 13 }. Recall points correspond to different values of δ,

and are plotted at the median size of the retrieval set. Error bars correspond to 25th and

75th percentiles of recall for all test queries.

6.4.4 Retrieval results

Figure 6.4 lists the nearest-neighbor recall performance for all tree configura-

tions. As should be expected, for all splitting rules and spill thresholds, recall perfor-

mance degrades as the maximum depth of the tree increases.

Across all spill thresholds τ and tree depths δ, the relative ordering of perfor-

mance of the different split rules is essentially constant: splitPCA performs slightly

better than splitKD, and both dramatically outperform splitRP and split2M . This indi-

cates that for the feature representation under consideration here (optimized codeword

histograms), variance reduction seems to be the most effective strategy for preserving
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nearest neighbors in spatial trees.

For small values of τ , recall performance is generally poor for all split rules.

However, as τ increases, recall performance increases across the board. The improve-

ments are most dramatic for splitPCA. With τ = 0, and δ = 7, the PCA partition tree has

leaf sets of size 6955 (0.8% of X ), and achieves median recall of 0.24. With τ = 0.10

and δ = 13, the PCA spill tree achieves median recall of 0.53 with a comparable median

retrieval set size of 6819 (0.7% of X ): in short, recall is nearly doubled with no appre-

ciable computational overhead. So, by looking at less than 1% of the database, the PCA

spill tree is able to recover more than half of the 100 true nearest neighbors for novel test

songs. This contrasts with the filter-and-refine approach (Schnitzer et al., 2009), which

requires a full scan of the entire database.

6.4.5 Timing results

Finally, we evaluated the retrieval time necessary to answer k-nearest neighbor

queries with spill trees. We assume that all songs have already been inserted into the

tree, since this is the typical case for long-term usage. As a result, the retrieval algorithm

can be accelerated by maintaining indices mapping songs to leaf sets (and vice versa).

We evaluated the retrieval time for PCA spill trees of depth δ = 13 and threshold

τ ∈ { 0.05, 0.10 }, since they exhibit practically useful retrieval accuracy. We randomly

selected 1000 test songs and inserted them into the tree prior to evaluation. For each

test song, we compute the time necessary to retrieve the k nearest training neighbors

from the spill tree (ignoring test songs), for k ∈ { 10, 50, 100 }. Finally, for comparison

purposes, we measured the time to compute the true k nearest neighbors by a linear

search over the entire training set.

Our implementation is written in Python/NumPy, 2 and loads the entire data set

into memory. The test machine has two 1.6GHz Intel Xeon CPUs and 4GB of RAM.

Timing results were collected through the cProfile utility.

Figure 6.5 lists the average retrieval time for each algorithm. The times are

relatively constant with respect to k: a full linear scan typically takes approximately

2.4 seconds, while the τ = 0.10 spill tree takes less than 0.14 seconds, and the τ =

2http://numpy.scipy.org

http://numpy.scipy.org
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Figure 6.5: Average time to retrieve k (approximate) nearest neighbors with a full scan

versus PCA spill trees.

0.05 tree takes less than 0.02 seconds. In relative terms, setting τ = 0.10 yields a

speedup factor of 17.8, and τ = 0.05 yields a speedup of 119.5 over the full scan.

The difference in speedup from τ = 0.10 to τ = 0.05 can be explained by the fact

that smaller overlapping regions result in smaller (and fewer) leaf sets for each query.

In practice, this speed-accuracy trade-off can be optimized for the particular task at

hand: applications requiring only a few neighbors which may be consumed rapidly (e.g.,

sequential playlist generation) may benefit from small values of τ , whereas applications

requiring more neighbors (e.g., browsing recommendations for discovery) may benefit

from larger τ .

6.5 Conclusion

We have demonstrated that spatial trees can effectively accelerate approximate

nearest neighbor retrieval. In particular, for VQ audio representations, the combination

of spill trees with and PCA splits yields a favorable trade-off between accuracy and

complexity of k-nearest neighbor retrieval.
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Chapter 7

Modeling playlists

7.1 Introduction

Music listeners typically do not listen to a single song in isolation. Rather, lis-

tening sessions tend to persist over a sequence of songs: a playlist. The increasing

quantity of readily available, digital music content has motivated the development of

algorithms and services to automate search, recommendation, and discovery in large

music databases. However, playlist generation is fundamental to how users interact with

music delivery services, and is generally distinct from related topics, such as similarity

(chapter 5) and semantic search (Turnbull et al., 2008).

Although many automatic playlist generation algorithms have been proposed

over the years, there is currently no standard evaluation procedure. As a result, it is

difficult to quantitatively compare different algorithms and objectively gauge progress

being made by the research community.

Previously, the predominant approach to playlist algorithm evaluation has been

to conduct human opinion surveys, which can be expensive, time-consuming, and dif-

ficult to reproduce. Alternatively, current automated evaluation schemes either reduce

the problem to a (discriminative) information retrieval setting, or rely on simplifying

assumptions that may not hold in practice.

In this chapter, we propose a simple, scalable, and objective evaluation procedure

for playlist algorithms that avoids the pitfalls of previous approaches. Our approach is

guided by the observation that playlist generation is not (only) an information retrieval

123
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problem, but a language modeling problem. Using this insight, we develop a general

class of data-driven playlist models built upon hyper-graph random walks.

7.2 A brief history of playlist evaluation

Although many algorithms for playlist generation have been proposed, evalua-

tion procedures have received relatively little specific attention. Here, we briefly sum-

marize previously proposed evaluation strategies, which can broadly be grouped into

three categories: human evaluation, semantic cohesion, and sequence prediction. This

section is not intended as a comprehensive survey of playlist algorithms, for which we

refer the interested reader to (Fields, 2011, chapter 2).

7.2.1 Human evaluation

Since the eventual goal of playlist algorithms is to improve user experience, the

ideal method of algorithm evaluation is to directly measure human response. Numerous

studies have been conducted in which test subjects rate the quality of playlists generated

by one or more algorithms. Pauws and Eggen (2002) asked users to provide a query song

with a particular context-of-use in mind (e.g., lively music), which was used as a seed

to generate a playlist. The user evaluated the resulting playlist on a scale of 1–10, and

how many tracks in the playlist fit the user’s intended use context. From these survey

responses, the authors were able to derive various statistics to demonstrate that their

proposed algorithm significantly outperforms randomly generated playlists. Similarly,

Barrington et al. (2009) conducted experiments in which users were presented with two

playlists (generated by obscured, competing systems) and asked to indicate which one

was (subjectively) better, and why.

While direct human evaluation studies can provide evidence that one algorithm

measurably outperforms another, they also have obvious practical limitations. They can

be laborious, difficult to reproduce, and may require large numbers of test subjects and

example playlists to achieve statistically meaningful results and overcome the effects of

subjectivity.
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7.2.2 Semantic cohesion

The general impracticality of large-scale user studies has motivated the develop-

ment of automated evaluation techniques. The most common approaches compute some

easily measurable quantity from each song in a generated playlist (e.g., artist, album, or

genre), which is used to determine the cohesion of the playlist. Cohesion may be defined

by frequency counts of meta-data co-occurrence (e.g., songs by the same artist) (Logan,

2002, 2004) or entropy of the distribution of genres within the playlist (Knees et al.,

2006, Dopler et al., 2008). In this framework, it is typically assumed that each song can

be mapped to a unique semantic tag (e.g., blues). This assumption is often unrealistic,

as songs generally map to multiple tags. Assigning each song to exactly one semantic

description may therefore discard a great deal of information, and obscure the semantic

content of the playlist. A more general form of semantic summarization was developed

by Fields et al. (2010), and used to derive a distance measure between latent topic mod-

els of playlists. However, it is not immediately clear how such a distance metric would

facilitate algorithm evaluation.

Issues of semantic ambiguity aside, a more fundamental flaw lies in the assump-

tion that cohesion accurately characterizes playlist quality. In reality, this assumption

is rarely justified, and evidence suggests that users often prefer highly diverse playlists

(Slaney and White, 2006).

7.2.3 Sequence prediction

A more direct approach to automatic evaluation arises from formulating playlist

generation as a prediction problem: given some contextual query (e.g., a user’s prefer-

ences, or a partial observation of songs in a playlist), the algorithm must predict which

song to play next. The algorithm is then evaluated on the grounds of its prediction, under

some notion of correctness. For example, Platt et al. (2002) observe a subset of songs in

an existing playlist (the query), and the algorithm predicts a ranking of all songs. The

quality of the algorithm is then determined by the position within the predicted ranking

of the remaining, unobserved songs from the playlist. Maillet et al. (2009) similarly

predict a ranking over songs from a contextual query — in this case, the preceding song
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or pair of songs — and evaluate by comparing the ranking to one derived from a large

collection of existing playlists.

Essentially, both of the above approaches transform playlist evaluation into an

information retrieval (IR) problem: songs observed to co-occur with the query are rel-

evant, and all other songs as irrelevant. As noted by Platt et al. (2002), this notion of

relevance may be exceedingly pessimistic in practice due to sparsity of observations.

Even in reasonably small music databases (say, a personal collection on the order of

thousands of songs), the probability of observing any given pair of songs in a playlist be-

comes vanishingly small, and therefore, the overwhelming majority of song predictions

are considered incorrect. In this framework, a prediction may disagree with observed

co-occurrences, but still be equally pleasing to a user of the system, and therefore be

unfairly penalized.

The IR approach — and more generally, any discriminative approach — is only

applicable when one can obtain negative examples, i.e., bad playlists. In reality, negative

examples are difficult to define, let alone obtain, as users typically only share playlists

that they like.1 This suggests that discriminative evaluation may not be the most natural

fit for playlist generation.

7.3 A natural language approach

In contrast to discriminative approaches to playlist evaluation, we advocate the

generative perspective when modeling playlist composition. Rather than attempting

to objectively score playlists as good or bad, which generally depends on user taste

and unobservable contextual factors, we instead focus on modeling the distribution of

naturally occurring playlists.

Formally, let X = { x1, x2, . . . , xn } denote a library of songs. We define a

playlist as an ordered finite sequence of elements of X . Any procedure which constructs

such ordered sequences is a playlist algorithm (or playlister). In general, we consider

randomized algorithms, which can be used to generate multiple unique playlists from a

1A notable exception is the work of Bosteels et al. (2009), in which explicit negative feedback was
inferred from skip behavior of Last.fm users. As noted by the authors, skip behavior can be notoriously
difficult to interpret.
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single query. Each playlister, be it randomized or deterministic, induces a probability

distribution over song sequences, and may therefore be treated as a probabilistic gener-

ative model.

This leads to our central question: how should generative models of song se-

quences be evaluated? Here, we take inspiration from the literature of statistical natural

language processing (Manning and Schütze, 1999), in which statistical models are fit

to a sample of strings in the language (e.g., grammatically valid sentences in English).

A language model determines a probability distribution P over strings, which can be

evaluated objectively by how well P matches the true distribution P∗. Since P∗ is

unknown, this evaluation is approximated by drawing a sample S ∼ P∗ of naturally

occurring strings, and then computing the likelihood of the sample under the model P.

Returning to the context of playlist generation, in place of vocabulary words, we

have songs; rather than sentences, we have playlists. The universe of human-generated

playlists therefore constitutes a natural language, and playlisters are models of the lan-

guage of playlists. While this observation is not itself novel — it appears to be folklore

among music researchers — its implications for algorithm evaluation have not yet been

fully realized. We note that recent work by Zheleva et al. (2010) evaluated playlisters in

terms of perplexity (exponentiated log-likelihood) of the genre distribution in a playlist,

rather than the song selection itself.

7.3.1 Evaluation procedure

To evaluate a playlister A, we require the following:

1. a library of n songs X ,

2. a sample of playlists S ⊆ X ?,2 and

3. the likelihood PA[s] of any playlist s ∈ X ?.

While the last requirement may seem like a tall order, we will demonstrate that for large

classes of playlisters, the computation can be quite simple.

2X ? denotes the Kleene-?: all sequences of any length of elements drawn from X .



128

A playlister A can be evaluated by computing the average log-likelihood of the

sample S:

L(S| A) ··=
1

|S|
∑
s∈S

logPA[s]. (7.1)

The average log-likelihood, on an absolute scale, is not directly interpretable —

although it’s proportional to the cross-entropy between PA and P∗ — but it is useful for

performing relative comparisons between two playlisters. Given a competing playlister

A′, we can say that A is a better model of the data than A′ if L(S| A) > L(S| A′).

There is a subtle, but important distinction between the proposed approach and

previous approaches to playlist evaluation. Rather than evaluate the perceived quality of

a generated, synthetic playlist, we instead evaluate the algorithm in terms of how likely

it is to produce naturally occurring playlists.

7.4 Playlist dialects

Numerous subtleties and difficulties arise when working with user-generated

playlist data. For example, the data is often noisy, and the playlist creator’s intent may

be obscure. In extreme cases, users may compose playlists by randomly selecting songs

from their libraries. More generally, different playlists may have different intended uses

(e.g., road trip or party mix), thematic elements (break up or romantic), or simply con-

tain songs only of specific genres.

To better understand the structure of playlists, we advocate a more subtle ap-

proach. Rather than viewing naturally occurring playlists as a single language, we pro-

pose to model playlists as a collection of dialects, each of which may exhibit its own

particular structure. Toward this end, we develop dialect-specific playlist models, and

evaluate on a large corpus of annotated, user-generated playlists.

The proposed approach raises several natural questions:

• Is it beneficial to individually model playlist dialects?

• Are some dialects easier to model than others?

• Which features are important for each dialect?
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Answering these questions will hopefully provide valuable insight into the underlying

mechanics of playlist generation.

7.5 Hyper-graph random walks

Over the last decade, several researchers have proposed playlist generation al-

gorithms based upon random walks (Logan, 2002, Ragno et al., 2005). A random walk

playlist model consists of a weighted graph G = (X , E, w), where the vertices X rep-

resent the library of songs, and the edges E and weights w encode pairwise affinities

between songs. A playlist is then generated by following a random trajectory through

the graph, where transitions xt xt+1 are sampled according to the weights on edges

incident to xt.

While random walk models are simple and often quite natural, they do carry cer-

tain limitations. It is often unclear how to define the weights, especially when multiple

sources of pairwise affinity are available. Moreover, relying on pairwise interactions can

severely limit the expressive power of these models (if each song has few neighbors), or

scalability and precision (if each song has many neighbors), thus limiting their practical

applicability.

To overcome these limitations, we propose a new class of playlist algorithms

which allow for more flexible affinities between songs and sets of songs.

7.5.1 The user model

To motivate our playlist generation algorithm, we propose a simple model of user

behavior. Rather than selecting songs directly from the entire collection X , we assume

that the user first narrows her selection to a subset e ⊆ X (e.g., blues songs), from

which the initial song is chosen uniformly at random. Similarly, for each subsequent

transition xt xt+1, the user selects a feature which describes the current song xt, and

then selects xt+1 uniformly from the subset of songs which also share that feature. The

process repeats until the playlist is complete.

This user model is exactly characterized by a random walk on a hyper-graph.

Hyper-graphs generalize undirected graphs by allowing an edge e ∈ E to be an arbitrary
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YEAR_1977

Jazz

AUDIO-5/16

Figure 7.1: An example random walk on a song hypergraph: vertices represent songs,

and edges are subsets of songs. Each transition xt xt+1 must lie within an edge.

subset of the vertices, rather than a pair (fig. 7.1). For example, a hypergraph edge may

be as general as blues songs, or as specific as funk songs from 1977. Edge weights can

be used to encode the importance of a subset: for example, a model of Blues playlists

would assign a high weight to an edge containing blues songs.

This model has several practically beneficial properties. First, it is efficient and

scalable, in that the only information necessary to describe a song is its membership in

the edge sets. Similarly, it naturally supports extension to new songs without having to

significantly alter the model parameters (edge weights). Second, the model can easily

integrate disparate feature sources, such as audio descriptors, lyrics, tags, etc., as long

as they can be encoded as subsets. Moreover, the model degrades gracefully if a song

only has partial representation (e.g., audio but no lyrics or tags). Finally, the model is

transparent, in that each transition can be explained to the user simply in terms of the

underlying edge taken between songs. As we will see in section 7.6, these edges often

have natural semantic descriptions.

7.5.2 The playlist model

To formalize our model, let H = (X , E, w) denote a hypergraph over vertices

(songs) X , edges E ⊆ 2X , and non-negative weights w ∈ R|E|+ . We assume that the

song library X and edge set E are given, and our goal is to optimize the edge weights

w. We denote by xet ··= Jxt ∈ eK the indicator that the song xt is contained in the edge e.

Because the selection of the next song xt+1 depends only on the previous song

xt and edge weights w, the model is a first-order Markov process. The likelihood of
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a playlist s = (x0 x1 · · · xT ) thus factors into likelihood of the initial song, and

each subsequent transition:

P[x0 x1 · · · xT | w] = P[x0| w]
T−1∏
t=0

P[xt+1| xt, w].

Given the edge weights w, the distribution over the initial song x0 can be characterized

by marginalizing over edges:

P[x0| w] ··=
∑
e∈E

P[x0| e]P[e| w] =
∑
e∈E

xet
|e|

we∑
f∈E wf

.

Similarly, the probability of a transition xt xt+1 is defined by marginalizing over edges

incident to xt:

P[xt+1| xt, w] ··=
∑
e∈E

P[xt+1| e, xt] ·P[e| xt, w]

=
∑
e∈E

Jxt+1 6= xtK · xet+1

|e| − 1
· xetwe∑
f∈E

xftwf
.

Finally, to promote sparsity among the edge weights and resolve scale-invariance

in the model, we assume an IID exponential prior on edge weights we with rate λ > 0:

P[we] ··= λ · exp (−λwe) · Jwe ∈ R+K .

7.5.3 Learning the weights

Given a training sample of playlists S ⊂ X ?, we would like to find the maximum

a posteriori (MAP) estimate of w:

w ← argmax
w∈R|E|+

logP[w| S] = argmax
w∈R|E|+

∑
s∈S

logP[s| w] +
∑
e∈E

logP[we]. (7.2)

The MAP objective (eq. (7.2)) is not concave, and it is generally difficult to find a global

optimum. Our implementation uses the L-BFGS-B algorithm (Byrd et al., 1995) to solve

for w, and converges quite rapidly to a stationary point. Training typically takes a matter

of seconds, even for the large playlist collections and edge sets described in section 7.6.
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7.6 Data collection

Previous work on playlist modeling used the Art of the Mix3 (AotM) collection

of Ellis et al. (2002). The existing AotM dataset was collected in 2002, and consists of

roughly 29K playlists over 218K songs, provided as lists of plain-text song and artist

names. In this work, we expand and enrich this dataset into a new collection, which we

denote as AotM-2011. This section describes our data collection, pre-processing, and

feature extraction methodology.

7.6.1 Playlists: Art of the Mix 2011

To expand the AotM playlist collection, we crawled the site for all playlists,

starting from the first indexed playlist (1998-01-22) up to the most recent at the time

of collection (2011-06-17), resulting in 101343 unique playlists. Each playlist contains

not only track and artist names, but a timestamp and categorical label (e.g., Road Trip

or Reggae).

In order to effectively model the playlist data, the plain-text song and artist

names must be resolved into a common namespace. We use the Million Song Dataset

(MSD) as the underlying database (Bertin-Mahieux et al., 2011). Rather than rely on

the Echo Nest text-search API to resolve song identifiers, we instead implemented a

full-text index of MSD song and artist names in Python with the Whoosh4 library. This

allowed both high throughput and fine-grained control over accent-folding and spelling

correction. Each (artist, song) pair in the raw playlist data was used as a query to the

index, and resolved to the corresponding MSD song identifier (if one was found). In

total, 98359 songs were matched to unique identifiers.

Because not every song in a playlist could be correctly resolved, each playlist

was broken into contiguous segments of two or more matched song identifiers. Finally,

playlist segments were grouped according to category. Table 7.1 lists each of the 25

most popular categories by size.

3http://www.artofthemix.org
4http://packages.python.org/Whoosh/

http://www.artofthemix.org
http://packages.python.org/Whoosh/
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7.6.2 Edge features

To fully specify the playlist model, we must define the edges of the hypergraph.

Because edges can be arbitrary subsets of songs, the model is able to seamlessly in-

tegrate disparate feature modalities. We use the following collection of edge features,

which can be derived from MSD and its add-ons.

Audio To encode low-level acoustic similarity, we first mapped each song i to a vector

xi ∈ R222 using the optimized vector quantized Echo Nest Timbre (ENT) de-

scriptors constructed in chapter 6. Audio descriptors were clustered via online

k-means, and cluster assignments were used to produce k disjoint subsets. This

process was repeated for k ∈ {16, 64, 256} to produce multiple overlapping edges

of varying degrees of granularity. All 98K songs receive audio representations.

Collaborative filter To capture high-level similarities due to user listening patterns,

we construct edges from the taste profile data used in the MSD Challenge (McFee

et al., 2012b). We used the Bayesian Personalized Ranking (BPR) algorithm (Ren-

dle et al., 2009, Gantner et al., 2011) to factor the users-by-songs (1M-by-380K)

feedback matrix into latent feature vectors xi ∈ R32. The BPR regularization

parameters were set to λ1 = λ2 = 10−4. Edges were constructed by cluster

assignments following the procedure described above for audio features. 62272

songs (63%) coincide with the taste profile data.

Era The era in which songs are released can play an important role in playlist composi-

tion (Cunningham et al., 2006, Lee, 2011). To model this, we use the MSD meta-

data to represent each song by its year and half-overlapping decades. For example,

the song Parliament - Flash Light maps to edges YEAR-1977, DECADE-1970

and DECADE-1975. 77884 songs (79%) were mapped to era descriptors.

Familiarity Previous studies have noted the importance of song- or artist-familiarity in

playlist composition (Cunningham et al., 2006). We used the artist familiarity data

provided with MSD, which maps each song to the range [0, 1] (0 being unfamiliar,

1 being very familiar). Edges were constructed by estimating the 25th and 75th
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percentiles of familiarity, and mapping each song to LOW, MEDIUM, or HIGH

familiarity.

Lyrics Previous studies have shown the importance of lyrics in playlist composition

(Lee, 2011). To compute lyrical similarity, we applied online latent Dirichlet

allocation (LDA) (Hoffman et al., 2010) with k = 32 to the musiXmatch lyrics

database.5 We then constructed three sets of 32 edges (one edge per topic): the

first matches each song to its most probable topic, the second matches each song

to its top three topics, and the third set to its top five topics. 53351 songs (56%)

were found in the musiXmatch data.

Social tags Using the Last.fm6 tags for MSD, we matched each song to its ten most

frequent tags. Each tag induces an edge, comprised of the songs assigned to that

tag.7 80396 songs (82%) matched to tag edges.

Uniform shuffle Because the features described above cannot model all possible tran-

sitions, we include the uniform edge that contains the entire set of songs. A

transition through the uniform edge can be interpreted as a random restart of the

playlist. The uniform shuffle also provides a standard baseline for comparison

purposes.

Feature conjunctions Some of the features described above may be quite weak in-

dividually, but when combined, may become highly descriptive. For example,

the tag rock and era YEAR-1955 are both quite vague, but the conjunction

of these two descriptors — rock-&-YEAR-1955 — retains semantic inter-

pretability, and is much more precise. We therefore augment the above collection

of edges with all pair-wise intersections of features. Note that this induces gen-

eral cross-modal feature conjunctions, such as Lyrics topic #4-&-Audio

cluster #17, resulting in an extremely rich set of song descriptors.

5http://labrosa.ee.columbia.edu/millionsong/musixmatch
6http://last.fm/
7A similar tag-hypergraph model was proposed by Wang et al. (2009).

http://labrosa.ee.columbia.edu/millionsong/musixmatch
http://last.fm/
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7.7 Experiments

To evaluate the proposed method, we randomly partitioned each of the top-25

categories listed in table 7.1 into ten 75/25 train/test splits. For each split, the train (test)

sets are collected across categories to form a global train (test) set ALL, which is used to

train a global model. After fitting a model to each training set, we compute the average

(length-normalized) log-likelihood of the test set S ′:

L(S ′| w) ··=
1

|S ′|
∑
s∈S′

1

|s|
logP[s| w].

For comparison purposes, we report performance in terms of the relative gain over the

uniform shuffle model wu (all weight assigned to the uniform edge):

G(w) ··= 1− L(S ′| w)

L(S ′| wu)
.

To simplify the model and reduce over-fitting effects, we pruned all edges con-

taining fewer than 384 (98359/256) songs. Similarly, we pruned redundant conjunction

edges that overlapped by more than 50% with either of their constituent edges. Ta-

ble 7.2 lists the number of edges retained after pruning. On average, each song maps

to 76.46 ± 57.79 edges, with a maximum of 218. In all experiments, we fix the prior

parameter λ = 1.

7.7.1 Experiment 1: Does dialect matter?

In our first set of experiments, we compare the global model to category-specific

models. Figures 7.2 and 7.3 illustrate the relative gain over uniform across all cate-

gories for four different model configurations: tags, tags with pairwise conjunctions, all

features, and all features with conjunctions.

Several interesting trends can be observed from these figures. First, in all but

two cases — Narrative and Rock under the all features with conjunctions model — the

category-specific models perform at least as well as the global model, often substantially

so. As should be expected, the effect is most pronounced for genre-specific categories

that naturally align with semantic tags (e.g., Hip Hop or Punk).

Note that the larger categories overlap more with ALL, leaving less room for

improvement over the global model. Not surprisingly, the Mixed category appears to be
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difficult to model with similarity-based features. Similarly, several other categories are

quite broad (Theme, Narrative, Rock), or may be inherently difficult (Alternating DJ,

Mixed).

Also of note are the differences across model configurations. In most cases,

feature conjunctions provide a modest improvement, both in the global and category-

specific models. Due to the large parameter space, some over-fitting effects can be ob-

served in the smallest categories (Folk, Reggae, Blues). Interestingly, several categories

benefit substantially from the inclusion of all features compared to only tags (e.g., Hip

Hop, Punk, Jazz).

7.7.2 Experiment 2: Do transitions matter?

Given the flexibility of the model, it is natural to question the importance of mod-

eling playlist continuity: could a model which ignores transition effects perform as well

as the random walk model? To test this, we split each playlist s = (x0 x1 · · · xT )

into singletons s0 = (x0), · · ·, sT = (xT ). With the modified corpus, the model treats

each song in a playlist as an independent draw from the initial distribution P[x0| w].

Consequently, a model trained on this corpus can fit global trends across playlists within

a category, but cannot enforce local continuity.

Figure 7.4 illustrates the relative gain for each category under the stationary dis-

tribution with all features and conjunctions. The results are qualitatively similar for

alternate model configurations. Compared to fig. 7.3 (bottom), the results are substan-

tially worse for most categories. In many cases, the stationary model performs worse

than the uniform shuffle. This reflects the importance of transition effects when model-

ing playlists, even when the corpus is confined to genre-specific categories.

7.7.3 Experiment 3: Which features matter?

As illustrated in fig. 7.3, certain categories seem to benefit substantially from the

inclusion of non-tag features. To investigate this effect, fig. 7.5 illustrates the aggregated

weight for each feature type under each of the category models. Note that weight is ag-

gregated across feature conjunctions, so the weight for edge DECADE_1955-&-Rock
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Figure 7.2: The median gain in log-likelihood over the baseline model using tags and

conjunctions of tags, aggregated over ten random splits of the data. Error bars span the

0.25–0.75 quantiles. Category-specific models generally outperform global models.
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Figure 7.3: The median gain in log-likelihood over the baseline model using all features.

counts both for Era and Tag.

Tags receive the majority of edge weight (64% on average) across all categories.
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Figure 7.4: Log-likelihood gain over uniform with the stationary model (all features

and conjunctions). Ignoring temporal structure significantly degrades performance.

Audio features appear to be most useful in Hip Hop, Jazz and Blues (43%–44%, com-

pared to 26% average). This is not surprising, given that these styles feature relatively

distinctive instrumentation and production qualities. Lyrical features receive the most

weight in categories with prominent or salient lyrical content (Folk, Cover, Narrative,

Hardcore, Break Up) and low weight in categories with little or highly variable lyrical

content (Electronic Music, Dance-House, Jazz). Era and familiarity receive moderate

weight (on average, 22% and 15% respectively), but the majority (20% and 14%) is due

to conjunctions.

7.7.4 Example playlists

Table 7.3 illustrates a few example playlists generated by the category-specific

feature conjunction model. For generative purposes, the uniform edge was removed

after training. The generated playlists demonstrate both consistency within a single

playlist and variety across playlists. Each transition in the playlist is explained by the



140

corresponding (incoming) edge, which provides transparency to the user: for example,

Cole Porter - You’re the Top follows Django Rheinhardt - Brazil because both songs

belong to the conjunction edge AUDIO-3/16-&-jazz, and share both high- and low-

level similarity.

7.8 Conclusion

We have demonstrated that playlist model performance can be improved by treat-

ing specific categories of playlists individually. While the simple models proposed here

work well in some situations, they are far from complete, and suggest many directions

for future work. The first-order Markov assumption is clearly a simplification, given that

users often create playlists with long-term interactions and global thematic properties.

Similarly, the uniform distribution over songs within an edge set allows for an efficient

and scalable implementation, but allowing non-uniform distributions could also be an

avenue for future improvement.
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Table 7.1: The distribution of the top 25 playlist categories in AotM-2011. Each playlist

consists of one or more segments of at least two contiguous MSD songs. 948 songs do

not appear within the top 25 categories, but are included in the model.

Category Playlists Segments Songs

Mixed 41798 101163 64766

Theme 12813 31609 35862

Rock-Pop 4935 13661 20364

Alternating DJ 4334 10493 18083

Indie 4528 10333 13678

Single Artist 3717 9044 17715

Romantic 2523 6269 8873

Road Trip 1846 4817 8935

Punk 1167 3139 4936

Depression 1128 2625 4794

Break Up 1031 2512 4692

Narrative 964 2328 5475

Hip Hop 1070 1958 2505

Sleep 675 1487 2957

Electronic Music 611 1131 2290

Dance-House 526 1117 2375

Rhythm and Blues 432 1109 2255

Country 398 908 1756

Cover 447 833 1384

Hardcore 268 633 1602

Rock 215 565 1866

Jazz 295 512 1089

Folk 241 463 1137

Reggae 183 403 831

Blues 165 373 892

Top-25 86310 209485 97411
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Table 7.2: Summary of edges after pruning.

Feature # Edges

Audio 204

Era 56

Lyrics 82

Uniform 1

Collaborative filter 93

Familiarity 3

Tags 201

All features 640

Feature conjunctions 6390



143

A
u
d
i
o

C
F

E
r
a

F
a
m
i
l
i
a
r
i
t
y

L
y
r
i
c
s

T
a
g
s

U
n
i
f
o
r
m

A
L
L
 
 
 
 

M
i
x
e
d
 
 
 
 

T
h
e
m
e
 
 
 
 

R
o
c
k
−
P
o
p
 
 
 
 

A
l
t
e
r
n
a
t
i
n
g
 
D
J
 
 
 
 

I
n
d
i
e
 
 
 
 

S
i
n
g
l
e
 
A
r
t
i
s
t
 
 
 
 

R
o
m
a
n
t
i
c
 
 
 
 

R
o
a
d
 
T
r
i
p
 
 
 
 

P
u
n
k
 
 
 
 

D
e
p
r
e
s
s
i
o
n
 
 
 
 

B
r
e
a
k
 
U
p
 
 
 
 

N
a
r
r
a
t
i
v
e
 
 
 
 

H
i
p
 
H
o
p
 
 
 
 

S
l
e
e
p
 
 
 
 

E
l
e
c
t
r
o
n
i
c
 
M
u
s
i
c
 
 
 
 

D
a
n
c
e
−
H
o
u
s
e
 
 
 
 

R
h
y
t
h
m
 
a
n
d
 
B
l
u
e
s
 
 
 
 

C
o
u
n
t
r
y
 
 
 
 

C
o
v
e
r
 
 
 
 

H
a
r
d
c
o
r
e
 
 
 
 

R
o
c
k
 
 
 
 

J
a
z
z
 
 
 
 

F
o
l
k
 
 
 
 

R
e
g
g
a
e
 
 
 
 

B
l
u
e
s
 
 
 
 

Fi
gu

re
7.

5:
D

is
tr

ib
ut

io
n

of
le

ar
ne

d
ed

ge
w

ei
gh

ts
fo

re
ac

h
pl

ay
lis

tc
at

eg
or

y.
W

ei
gh

ti
s

ag
gr

eg
at

ed
ac

ro
ss

fe
at

ur
e

co
nj

un
ct

io
ns

.



144

Table 7.3: Example playlists generated by various dialect models. The incoming edge

is shared by the previous song (if one exists), and is used to select the current song.

Incoming edge Playlist
Hip Hop

AUDIO-149/256 Eminem - The Conspiracy (Freestyle)
AUDIO-149/256 Busta Rhymes - Bounce

DECADE-2000-&-rap Lil’ Kim (feat. Sisqo) - How Many Licks?
old school A Tribe Called Quest - Butter

DECADE_1985-&-Hip-Hop Beastie Boys - Get It Together
AUDIO-12/16 Big Daddy Kane - Raw [Edit]

Electronic Music
AUDIO-11/16-&-downtempo Everything But The Girl - Blame
DECADE_1990-&-trip-hop Massive Attack - Spying Glass

AUDIO-11/16-&-electronica Björk - Hunter
DECADE_2000-&-AUDIO-23/64 Four Tet - First Thing

electronica-&-experimental Squarepusher - Port Rhombus
electronica-&-experimental The Chemical Brothers - Left Right
Rhythm and Blues

70s-&-soul Lyn Collins - Think
AUDIO-14/16-&-funk Isaac Hayes - No Name Bar
DECADE_1965-&-soul Michael Jackson - My Girl
AUDIO-6/16-&-soul The Platters - Red Sails In The Sunset

FAMILIARITY_MED-&-60s The Impressions - People Get Ready
soul-&-oldies James & Bobby Purify - I’m Your Puppet

Jazz
AUDIO-14/16-&-jazz Peter Cincotti - St Louis Blues

jazz Tony Bennett - The Very Thought Of You
vocal jazz Louis Prima - Pennies From Heaven

jazz-&-instrumental Django Reinhardt - Brazil
AUDIO-3/16-&-jazz Cole Porter - You’re The Top

jazz Doris Day - My Blue Heaven



Appendix A

Optimizing Average Precision

A.1 Cutting plane optimization of AP

Recall from eq. (3.6) the definition of a ranking’s average precision (AP). Av-

erage precision is a commonly used performance metric in information retrieval, due to

its ability to emphasize the early positions of a ranking without relying on a hard thresh-

old (like in precision-at-k) (Baeza-Yates and Ribeiro-Neto, 1999). Yue et al. (2007)

derived a greedy cutting plane algorithm to optimize AP loss within the structural SVM

framework. In this appendix, we derive an alternative algorithm based on dynamic pro-

gramming, which exploits the recursive substructure of AP and the partial order feature

ψpo.

To implement this, we must describe an efficient algorithm to find the most vi-

olated constraint for each q, that is, the ranking y which has simultaneously large dis-

criminant value 〈w,ψ(q, y)〉 and large loss ∆(yq, y). Explicitly, for each q, we seek

y ← argmax
y
〈w,ψ(q, y)− ψ(q, yq)〉+ ∆(yq, y) (A.1)

= argmax
y
〈w,ψ(q, y)〉+ ∆(yq, y)

= argmax
y
〈w,ψ(q, y)〉+ AP(q, yq)− AP(q, y)

= argmax
y
〈w,ψ(q, y)〉 − AP(q, y). (A.2)

In the next section, we derive a dynamic programming algorithm to solve for the most

145
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violated constraint.

A.2 Most violated constraint DP

The first thing to note, as observed by Yue et al. (2007), is that AP is invariant to

permutations of relevant (and irrelevant) documents, but the discriminant score is not.

Therefore, if the positions of relevant documents are fixed within a ranking, eq. (A.2)

is optmized by sorting the relevant (and irrelevant) documents in descending order ac-

cording to to the point-wise discriminant score 〈w, φ(q, xi)〉. Given this observation, to

solve eq. (A.2), it suffices to first sort X+
q and X−q by the discriminant score, and then

solve for an optimal interleaving of the two ordered sets.

Our technique to construct the optimal interleaving exploits two additional ob-

servations:

Proposition A.1. Let y be a partial ranking of the first a − 1 relevant documents X+
q

and all irrelevant documents X−q . Creating y′ by inserting the ath relevant document at

position b (where b is strictly greater than the index of the last relevant document in y,

see fig. A.1) yields the following relations:

P@k(q, y′) =


P@k(q, y) k < b

P@k(q, y) + 1
k

b ≤ k < a+ |X−q |
a

a+|X−q |
k = a+ |X−q |

(A.3)

and

AP(q, y′) =
1

a

(
(a− 1) AP(q, y) +

a

b

)
=

(
a− 1

a

)
AP(q, y) +

1

b
(A.4)

The first term in eq. (A.4) re-scales the AP score of y to account for the increased

length of y′, and the second term adds P@b = a/b to the average precision for the new

relevant document.

Proposition A.2. Let y and y′ be as in proposition A.1. Then the following relation

holds:

ψ(q, y′) =

(
a− 1

a

)
ψ(q, y) +

∑
j∈X−q

y′aj

(
φ(q, xa)− φ(q, xj)

a · |X−q |

)
. (A.5)
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Relevant
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(a)

Ranking AP

y 1
3

(
1 + 1 + 3

4

)
= 11/12

y′ 1
4

(
1 + 1 + 3

4
+ 4

5

)
= 71/80

(b)

Figure A.1: (a) A ranking y′ is created from y by inserting a new relevant document at

position b = 5. In this example, a = 4 and |X−q | = 5. (b) The difference in AP scores

for the two rankings follows eq. (A.4).

The first term of eq. (A.5) rescales ψ(q, y) to account for the inclusion of a new

(relevant) document, and the second term counts all of the vector differences due to new

document. Note that for a fixed position b, y′aj is completely determined:

y′aj =

+1 j ≥ (b− 1)− (a− 1) = b− a

−1 j < b− a
, (A.6)

assuming that the j index respects the descending discriminant ordering of X−q .

Equipped with these observations, we can now derive a dynamic programming

algorithm to solve eq. (A.2).

A.2.1 DP algorithm

Proposition A.1 and A.2 provide a convenient decomposition of eq. (A.2) into

two terms, one of which depending all but the last relevant document, and the other

depending on the position of the last relevant document. Importantly, the first term

defines the solution to a sub-problem involving all but the last document, allowing us to

solve for the total score recursively, and the second is independent of the solution to the

sub-problem.

To maximize eq. (A.2) over y, we restrict attention to rankings which place the

last relevant document at position b, and then maximize over all choices of b. Let

V (a, b) ··= max
yab

〈w,ψ(q, yab )〉 − AP(q, yab ), (A.7)
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where yab is restricted to rankings of only the first a relevant documents, and the ath

relevant document is located at position b. The solution of eq. (A.2) can be found by

optimizing over all b when all a = |X+
q | documents have been inserted:

max
b≤|X+

q |+|X−q |
V (|X+

q |, b).

Applying proposition A.1 and proposition A.2, we can rewrite eq. (A.7) as

V (a, b) = max
yab

〈w,ψ(q, yab )〉 − AP(q, yab )

= max
b′<b

(
a− 1

a

)
〈w,ψ(q, ya−1

b′ )〉+

〈
w,
∑
j∈X−q

(yab )aj
φ(q, xa)− φ(q, xj)

a · |X−q |

〉

−
(
a− 1

a

)
AP(q, ya−1

b′ )− 1

b

=

(
a− 1

a
max
b′<b

V (a− 1, b′)

)
+

〈
w,
∑
j∈X−q

(yab )aj
φ(q, xa)− φ(q, xj)

a · |X−q |

〉
− 1

b
.

(A.8)

For the base case of a = 0, there are no relevant documents, so V (0, b) = 0 for all b.

For a < b, there is no feasible ranking, so V (a, b) = −∞. The recursive formulation of

eq. (A.8) completely characterizes the dynamic programming algorithm to solve for the

most violated constraint, which is listed as algorithm A.1.

A.2.2 Complexity

To compute the optimal y using algorithm A.1 requires filling in a table of size1

O
(
|X+

q | ×
(
|X+

q |+ |X−q |
))

= O
(
|X+

q | × |X−q |
)
.

Filling in each cell of the table thus requires maximizing over O
(
|X−q |

)
entries in the

previous row.

However, the per-cell cost can be amortized to O
(
|X+

q |+ |X−q |
)

per row —

O(1) per cell — by working in ascending order of b over the range [a, |X−q |+ |X+
q |], and

re-using the max computed in the previous cell. Similarly, the second term in eq. (A.8)
1In practice, it is generally assumed that |X+

q | ∈ O(|X−q |), and X+
q is often small enough to be treated

as constant.
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Algorithm A.1 Cutting plane algorithm for average precision

Input: parameter vector w, query q, positive and negative results X+
q and X−q

Output: y ··= argmax
y∈Y

〈w,ψ(q, y)〉+ ∆AP(yq, y)

1: Initialize (|X+
q |+ 1)× (|X+

q |+ |X−q |) value array V and pointer array Y

2: ∀b : V [0, b]← 0

3: ∀a, b s. t. 0 < a < b : V [a, b]← −∞
4: for a = 1, 2, . . . , |X+

q | do

5: for b = a, a+ 1, . . . , |X+
q |+ |X−q | do

6: V [a, b]← eq. (A.8)

7: Y [a, b]← argmax
b′<b

eq. (A.8)

8: end for

9: end for

10: return ranking y generated by following Y
[
|X+

q |, b
]

where

b ··= argmax
b′

V
[
|X+

q |, b′
]
.

can be amortized by adjusting the score from b to b+ 1: only a single yaj changes from

V (a, b) to V (a, b+1), so the second term can be updated inO(1) time as well. Therefore,

the total cost of the algorithm is O
(
|X+

q |2 + |X+
q | × |X−q |

)
= O

(
|X+

q | × |X−q |
)
.
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Online k-Means

B.1 Introduction

Clustering a data set X ⊂ Rd via k-means is a central step to many of the meth-

ods discussed in this dissertation, including codebook learning for vector quantization

(chapter 5), generating splitting rules for spatial tree data structures (chapter 6), and

clustering songs for playlist generation (chapter 7). In each case, the set to be clustered

contains a large number of points, ranging from 105 (song clustering) to 107 (codebook

learning).

In these large-scale settings, batch clustering algorithms can be prohibitively

expensive, both in terms of time and space complexity. This appendix describes an

online k-means algorithm derived from Hartigan’s method (Hartigan, 1975, Telgarsky

and Vattani, 2010) to generate cluster centers with minimal space complexity O(kd).

The method is originally due to Telgarsky (2010), and is included here for completeness.
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B.2 Hartigan’s method and online k-means

All k-means algorithms seek to minimize the sum-squared error objective over

the k cluster centroids { µi }ki=1:

f(µ1, µ2, . . . , µk) ··=
∑
xi∈X

‖xi − µ(xi)‖2 (B.1)

µ(x) ··= argmin
µi

‖x− µi‖2.

Most commonly, the centroids are optimized via Lloyd’s method (MacQueen, 1967,

Lloyd, 1982), which repeatedly constructs k clusters

Ct+1
j ←

{
xi

∣∣∣∣ j = argmin
ι
‖xi − µtι‖2

}
,

updates each centroid

µt+1
j ← µ(Ct+1

j )

µ(C) ··=
1

|C|
∑
x∈C

x,

repeating for t = 1, 2, . . . , until convergence.

The method of Hartigan (1975) is similar, but differs in that updates are per-

formed one point at a time, rather than in batches. At step t, a point xt ∈ X is selected

and reassigned so as to decrease eq. (B.1). Let Ct denote the cluster currently containing

xt. As shown by Telgarsky and Vattani (2010), the change in eq. (B.1) due to moving xt
from Ct to some cluster Cj can be computed as:

∆f(xt, Cj) ··=
|Cj|
|Cj|+ 1

‖µ(Cj)− xt‖2 − |Ct|
|Ct| − 1

‖µ(Ct)− xt‖2, (B.2)

and xt is moved to the Cj that maximally decreases cost: argminj ∆f(xt, Cj).

This point-wise reassignment strategy lends itself naturally to an online clus-

tering algorithm (Telgarsky, 2010). When a new point xt arrives, it can be arbitrarily

assigned to a cluster Ct (equivalently, to a centroid µt, and then reassigned to the cluster

(centroid) which maximally decreases cost. Functionally, this is equivalent to assigning

xt to the cluster Cj which minimizes the first term of eq. (B.2) while ignoring the second

term (which is constant over the argmin). Note that all that is needed for this operation

are the centroids µj and cluster sizes nj ··= |Cj|; after updating these parameters, the

point xt may be discarded. The resulting algorithm is listed as algorithm B.1.
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Algorithm B.1 Online Hartigan k-means

Input: k ∈ Z+, data sequence x1, x2, · · · ∈ Rd

Output: k centroids { µ1, µ2, . . . , µk } ⊂ Rd

1: Initialize each µi ← 0 and counters ni ← 0.

2: for t = 1, 2, . . . do

3: Find the closest centroid to xt:

ι← argmin
1≤i≤k

ni
ni + 1

‖µi − xt‖2

4: Update the centroid µι and count nι:

µι ←
nι

nι + 1
µι +

1

nι + 1
xt

nι ← nι + 1

5: end for

6: return { µ1, µ2, . . . , µk }
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Statistical models of music-listening sessions in social media. In Proceedings of the
19th international conference on World wide web, WWW ’10, pages 1019–1028,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8.

Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In Pro-
ceedings of the 24th International Conference on Machine Learning, ICML, pages
1191–1198, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3.


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Music information retrieval
	Summary of contributions
	Preliminaries

	Learning multi-modal similarity
	Introduction
	Contributions
	Preliminaries

	A graphical view of similarity
	Similarity graphs
	Graph simplification

	Partial order embedding
	Linear projection
	Non-linear projection via kernels
	Connection to GNMDS

	Multiple kernel embedding
	Unweighted combination
	Weighted combination
	Concatenated projection
	Diagonal learning

	Experiments
	Toy experiment: taxonomy embedding
	Musical artist similarity

	Hardness of dimensionality reduction
	Conclusion
	Embedding partial orders
	Solver
	Relationship to AUC

	Metric learning to rank
	Introduction
	Related work
	Preliminaries

	Structural SVM review
	Optimization
	Ranking with structural SVM

	Metric learning to rank
	Algorithm
	Implementation

	Ranking measures
	AUC
	Precision-at-k
	Average Precision
	Mean Reciprocal Rank
	Normalized Discounted Cumulative Gain

	Experiments
	Classification on UCI data
	eHarmony data

	Conclusion

	Faster structural metric learning
	Introduction
	Structural metric learning
	Alternating direction optimization
	Dual optimization
	Multiple kernel projection
	Implementation details

	Experiments
	UCI data
	Multimedia data

	Conclusion
	Derivation of mlradmm:eq:mlr:dual
	Axis-aligned learning

	Similarity from a collaborative filter
	Introduction
	Related work
	Contributions

	Learning similarity
	Collaborative filters

	Audio representation
	Codebook training
	(Top-) Vector quantization
	Histogram representation and distance

	Experiments
	Data
	Procedure
	Comparisons

	Results
	Conclusion

	Large-scale similarity search
	Introduction
	Related work
	Spatial trees
	Maximum variance KD-tree
	PCA-tree
	2-means
	Random projection
	Spill trees
	Retrieval algorithm and analysis

	Experiments
	Audio representation
	Representation evaluation
	Tree evaluation
	Retrieval results
	Timing results

	Conclusion

	Modeling playlists
	Introduction
	A brief history of playlist evaluation
	Human evaluation
	Semantic cohesion
	Sequence prediction

	A natural language approach
	Evaluation procedure

	Playlist dialects
	Hyper-graph random walks
	The user model
	The playlist model
	Learning the weights

	Data collection
	Playlists: Art of the Mix 2011
	Edge features

	Experiments
	Experiment 1: Does dialect matter?
	Experiment 2: Do transitions matter?
	Experiment 3: Which features matter?
	Example playlists

	Conclusion

	Optimizing Average Precision
	Cutting plane optimization of AP
	Most violated constraint DP
	DP algorithm
	Complexity


	Online k-Means
	Introduction
	Hartigan's method and online k-means


