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ABSTRACT

This paper describes a supervised learning algorithm which
optimizes a feature representation for temporally constrained
clustering. The proposed method is applied to music segmen-
tation, in which a song is partitioned into functional or locally
homogeneous segments (e.g., verse or chorus). To facilitate
abstraction over multiple training examples, we develop a la-
tent structural repetition feature, which summarizes the repet-
itive structure of a song of any length in a fixed-dimensional
representation. Experimental results demonstrate that the pro-
posed method efficiently integrates heterogeneous features,
and improves segmentation accuracy.

Index Terms— Music, automatic segmentation, learning

1. INTRODUCTION

Automatic music segmentation algorithms take as input the
acoustic signal of a musical performance, and produce a tem-
poral partitioning of the performance into a small number of
segments. Ideally, segments correspond to structurally mean-
ingful regions of the performance, such verse or chorus.

Common approaches to music segmentation attempt to
detect repeated patterns of features (e.g., a repeating chord
progression), often by some form of clustering [1] or nov-
elty detection [2]. Often, features are manually tuned and
optimized for a specific development set, and carry implicit
assumptions about the nature of musical structure. As a con-
crete example, features built to detect repeated chord progres-
sions may work well for characterizing some genres (e.g.,
rock or pop), but fail for other styles (e.g., jazz or hip-hop)
which may be structured around timbre rather than melody.

In this work, we propose a supervised learning algorithm
to automatically adapt acoustic and structural features to the
statistics of a training set. Given a collection of songs with
structural annotations, the algorithm finds an optimal linear
transformation of features to preserve and predict segment
boundaries.

This work was supported by a grant from the Mellon foundation, and
grant IIS-1117015 from the National Science Foundation (NSF).

1.1. Our contributions

Our primary contribution in this work is the ordinal linear dis-
criminant analysis (OLDA) technique to learn a feature trans-
formation which is optimized for musical segmentation, or
more generally, time-series clustering. As a secondary con-
tribution, we propose a latent structural repetition descriptor,
which facilitates learning and generalization across multiple
examples.

1.2. Related work

The segmentation algorithm we use is most similar to the con-
strained clustering method of Levy and Sandler [1], which
incorporated sequential consistency constraints to a hidden
Markov model. The method proposed here is simpler, and
uses a sequentially constrained agglomerative clustering algo-
rithm to produce a hierarchical segmentation over the entire
track. Because the segmentation is hierarchical, the number
of segments need not be specified in advance.

The proposed latent repetition features are adapted from
the work of Serrà et al. [2]. While qualitatively similar, we
apply different filtering and beat synchronization techniques
to better preserve segment boundaries. In addition to chord
sequence repetitions, our method includes timbre repetitions,
as well as localized timbre, pitch, and timing information.

2. MUSIC SEGMENTATION

The criteria for deciding what is or is not a segment may
vary across genres or styles. Pop music relies heavily on a
verse/chorus structure, and is well characterized by repeating
chord sequences. On the other hand, jazz tends to be struc-
tured by changing instrumentation (e.g., the current soloist),
and is better modeled as sequences of consistent timbre. In
general, a structural segmentation algorithm should include
multiple feature representations in order to function on vari-
ous musical genres.

As a first step toward integrating multiple features, we in-
troduce a structural repetition feature which is amenable to
learning and abstraction across multiple example songs.



2.1. Latent structural repetition

Figure 1 outlines our approach for computing structural repe-
tition features, which is adapted from Serrà et al. [2]. First, we
extract beat-synchronous features (e.g., MFCCs or chroma)
from the signal, and build a binary self-similarity matrix by
linking each beat to its nearest neighbors in feature space
(fig. 1, top-left). Serrà et al. incorporate local historical
context by concatenating features from successive frames
xt 7→ [xTt , x

T
t−1]T prior to computing the self-similarity ma-

trix. We adopt this strategy, with the distinction that xt and
xt−1 are beat-synchronous.

With beat-synchronous features, repeated sections appear
as diagonals in the self-similarity matrix. To detect repeated
sections, the matrix is skewed by shifting the ith column down
by i rows (fig. 1, top-right), thereby converting diagonals into
horizontals.

Nearest-neighbor linkage can result spurious links and
skipped connections. Serrà et al. resolve this by convolving
with a Gaussian filter, which suppresses noise, but also blurs
segment boundaries. Instead, we use a horizontal median fil-
ter, which (for odd window length) produces a binary matrix,
suppresses links outside of repeated sequences, and fills in
skipped connections (fig. 1, bottom-left). The width of the
median filter directly corresponds to the minimal duration (in
beats) of detected repetitions, and is consequently easier to
tune than a Gaussian filter. The median filter also preserves
edges better than the Gaussian filter, so we may expect more
precise detection of segment boundaries.

Let R ∈ R2t×t denote the median-filtered, skewed self-
similarity matrix over t beats. Because the dimensionality
(number of rows) of R varies from one track to the next, it is
difficult to model and generalize across collections. However,
what matters for segmentation is not the representation of the
columns of R, but the similarity between them. More pre-
cisely, methods which depend on distances between column-
vectors — i.e., those based on clustering or novelty curves —
are invariant to unitary transformations UT: ‖R·,i − R·,j‖ =
‖UTR·,i − UTR·,j‖.

We therefore introduce latent structural repetition, which
compresses each any song’s R matrix to a fixed-dimension
representation. Let R = UΣV T denote the singular value de-
composition of R, with (descending) singular values σi. The
latent structural repetition feature is defined as the matrix L:

L ··= σ−1
1 UTR = σ−1

1 ΣV T. (1)

Reducing L to d < 2t principal components retains the
most important factors, and normalizing by σ1 reduces the
influence of track duration. Figure 1 (bottom-right) depicts
an example of the resulting features. Small values of d of-
ten suffice to capture global structure: in the given example,
the top component suffices to detect transitions between verse
(non-repetitive) and chorus (repetitive).
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Fig. 1. Repetition features derived from Tupac Shakur
— Trapped. Top-left: a binary self-similarity (k-nearest-
neighbor) matrix over beats. Top-right: the time-lag transfor-
mation of the self-similarity matrix. Bottom-left: the result
of the horizontal median filter. Bottom-right: 8-dimensional
latent factor representation (best viewed in color).

2.2. Constrained agglomerative clustering

Given a feature matrix X ∈ RD×t, we produce a hierar-
chical clustering of the columns of X by using the linkage-
constrained variant of Ward’s agglomerative clustering algo-
rithm [3] as implemented in scikit-learn [4]. For each
column X·,i, linkage constraints are generated for (i − 1, i)
and (i, i + 1). Starting from t clusters (one for each column
ofX), linked clusters are iteratively merged until only one re-
mains. The hierarchy is computed in O(t) merge operations,
and due to the constraints, there are O(t) feasible merges at
each step. Each merge operation takes time O(D + log t) (to
compute centroids and manage a priority queue), so the algo-
rithm runs inO(tD+t log t) time. ForD ∈ Ω(log t), the cost
of clustering is dominated by the Ω(tD) cost of computingX .

2.3. Choosing the number of segments

The hierarchical clustering produces segmentations for all
numbers of segments 1 ≤ k ≤ t. Because music segmenta-
tion is itself an ambiguous task, the ability to simultaneously
produce segmentations at all resolutions is a key advantage of
the proposed technique. However, standard evaluation proce-
dures are defined only for flat segmentations, and require a
specific pruning of the segment hierarchy.

To select the number of segments k, we compute the clus-
tering cost of each pruning within a plausible bounded range



kmin ≤ k ≤ kmax. The bounds are determined by assum-
ing average minimum and maximum segment duration of 10s
and 45s. AIC correction [5] is then applied to each candidate
pruning (assuming a spherical Gaussian model for each seg-
ment), and k is chosen to minimize the AIC-corrected cost.

2.4. Multiple features

Structural repetition features are most commonly used to de-
tect repeated chord sequences, which is appropriate for seg-
menting many genres of popular music. However, the con-
ventions of structure can vary from one genre to the next, so
a general segmentation algorithm should include a variety of
feature descriptors. We therefore aggregate several types of
feature descriptors for each beat:

Timbre mean Mel-frequency cepstral coefficients,

Pitch (coordinate-wise) median chroma vectors,

Timbre repetition latent MFCC repetitions,

Pitch repetition latent chroma repetitions,

Time Time-stamp (in seconds) of each beat, normalized
time-stamps (as a fraction of track duration), beat in-
dices (1, 2, . . . , t), and normalized beat indices
(1/t, 2/t, . . . , 1).

Local timbre features can be useful for non-repetitive forms
(e.g., jazz), while timbre repetition is useful for sample-based
genres (e.g., hip-hop or electonic). Similarly, chroma fea-
tures capture local pitch similarity, while pitch repetitions
capture chord progressions. The time features act as an
implicit quadratic regularization on segment durations, and
promote balanced segmentations. We include normalized and
unnormalized time-stamps to allow the learning algorithm
(Section 3) to adapt the regularization to either relative or
absolute segment durations; beat index features differ from
raw time features by correcting for tempo variation.

All features can be stacked together into a single feature
matrix X ∈ RD×t, and clustered via the method described
above. However, the relative magnitude and importance of
each feature is not calibrated to produce optimal clusterings.

3. ORDINAL LINEAR DISCRIMINANT ANALYSIS

To improve the feature representation for clustering, we pro-
pose a simple adaptation of Fisher’s linear discriminant anal-
ysis (FDA) [6]. In its multi-class form, FDA takes as in-
put a labeled collection of data xi ∈ RD and class labels
yi ∈ {1, 2, . . . , C}, and produces a linear transformation
W ∈ RD×D that simultaneously maximizes the distance
between class centroids, and minimizes the variance of each
class individually [7]. This is accomplished by solving the
following optimization:

W ··= argmax
W

tr
(

(WTAWW )
−1
WTABW

)
, (2)

where AW and AB are the within- and between-class scatter
matrices:

AW ··=
∑
c

∑
i:yi=c

(xi − µc)(xi − µc)
T

AB ··=
∑
c

nc(µc − µ)(µc − µ)T,

µ denotes the mean across all classes, µc is the mean of class
c, and nc denotes the number of examples in class c. Equa-
tion (2) can be efficiently solved as a generalized eigenvalue
problem over the two scatter matrices (AB, AW) [8].

Class labels can be synthesized from segments on an an-
notated training song, so that the columns of X belonging to
the first segment are assigned to class 1, the second segment
to class 2, and so on. However, interpreting each segment as
a distinct class could result in a repeated verse being treated
as two distinct classes which cannot be separated. A more se-
rious problem with this formulation is that it is unclear how
to generalize across multiple songs, as it would result in FDA
attempting to separate segments from different songs.

Due to linkage constraints, the agglomerative clustering
algorithm (section 2.2) only considers merge operations over
successive segments (c, c+ 1). This motivates a relaxed FDA
formulation which only attempts to separate adjacent seg-
ments. This is accomplished by replacing the between-class
scatter matrix AB with the resulting ordinal scatter matrix:

AO ··=
∑
c<C

nc(µc − µc+)(µc − µc+)T

+ nc+1(µc+1 − µc+)(µc+1 − µc+)T

µc+ ··=
ncµc + nc+1µc+1

nc + nc+1
.

Intuitively,AO measures the deviation of successive segments
(c, c + 1) from their mutual centroid µc+, which coincides
with the comparison performed for merge operations in the
agglomerative clustering algorithm. Optimizing W to max-
imize this deviation, while minimizing within-segment vari-
ance, should enhance the overall segmentation accuracy.

To improve numerical stability when AW is singular, we
include a smoothing parameter λ > 0.1 The OLDA optimiza-
tion takes the form:

W ··= argmax
W

tr
(

(WT(AW + λI)W )
−1
WTAOW

)
, (3)

which again can be solved efficiently as a generalized eigen-
value problem over the matrix pair (AO, AW + λI).

Because interactions are only measured between neigh-
boring segments, it is straightforward to include data from
multiple songs by summing their individual contributions to
AO and AW. After learning W , the feature matrix X for a
previously unseen song is transformed via X 7→ WTX , and
then clustered as described in Section 2.2.

1The same regularization strategy is applied to FDA in Section 4.



4. EVALUATION

All proposed methods are implemented in Python with the
librosa package.2 All signals were downsampled to
22KHz mono, and analyzed with a 93ms window and 3ms
hop. MFCCs are generated from 128 Mel bands with an
8KHz cutoff. We take 32 MFCCs and 12 log-magnitude
chroma bins; repetition features are calculated with 2

√
t

nearest neighbors under a standardized euclidean metric,
median-filtered with a window of width 7, and reduced to
32 dimensions each. Including the four time-stamp features,
the combined representation has dimension D = 112. Beats
were detected by the median-percussive method [9].

4.1. Data and metrics

We evaluate predicted segmentations on two publicly avail-
able datasets:

Beatles-ISO 179 songs by the Beatles [10, 11], and

SALAMI-free 253 songs from the SALAMI dataset [12]
which are freely available on the Internet Archive [13].

Both datasets provide labels for each annotated segment (e.g.,
verse or chorus), but we ignore these labels in this set of ex-
periments. Compared to the Beatles corpus, SALAMI con-
sists of tracks by multiple artists, and has much more diversity
of genre, style, and instrumentation.

On both datasets, we compare to SMGA [2], which
achieved the highest performance in the 2012 MIREX struc-
tural segmentation evaluation [14]. On SALAMI-Free, we
include comparisons to C-NMF [13] and SI-PLCA [15].

For both datasets, we evaluate the unweighted feature rep-
resentation (Native), FDA optimization (using the one-class-
per-segment approach described in Section 3), and OLDA.
To ensure fairness of evaluation, the FDA and OLDA models
used on the Beatles-ISO were trained using only SALAMI-
free data, and vice versa. FDA and OLDA were trained by
optimizing λ ∈ {100, 101, . . . , 109} to maximize F0.5 score
(see below) on the training set.

For each method and dataset, we report the precision, re-
call, and F-measure of boundary retrieval, using either a 0.5-
second or 3-second window.3

4.2. Results

Table 1 lists the results for the Beatles-ISO and SALAMI-
free. SMGA achieves highest performance with a 3-second
window on both datasets.4 The proposed methods achieve
higher accuracy for boundary detection at 0.5s resolution,
which can be attributed to the increased accuracy afforded by
the beat-synchronous and median-filtered repetition features.

2Code is available at https://github.com/bmcfee/olda.
3 For a detailed description of segmentation metrics, see [16].
4SMGA parameters were tuned to perform well on the Beatles data [2].

Table 1. Boundary detection accuracy. Best scores are in-
dicated in bold; significance is assessed with a Bonferroni-
corrected Wilcoxon signed-rank test at α = 0.05.

Beatles-ISO

Method P0.5 R0.5 F0.5 P3 R3 F3

Native 0.278 0.271 0.266 0.560 0.510 0.522
FDA 0.304 0.310 0.296 0.555 0.536 0.530
OLDA 0.297 0.320 0.296 0.553 0.550 0.535
SMGA 0.144 0.169 0.153 0.621 0.728 0.658

SALAMI-free
Native 0.233 0.188 0.202 0.492 0.406 0.431
FDA 0.290 0.222 0.243 0.552 0.429 0.466
OLDA 0.255 0.248 0.247 0.505 0.483 0.477
SMGA 0.115 0.178 0.134 0.434 0.666 0.508
CNMF 0.105 0.133 0.110 0.450 0.543 0.463
SI-PLCA 0.210 0.102 0.128 0.451 0.228 0.286

FDA and OLDA consistently improve over the baseline
(Native), and achieve comparable F-scores. However, the
FDA method tends to improve precision at the expense of re-
call, which indicates a tendency toward under-segmentation.
The OLDA method is adapted to only distinguish successive
segments, and exhibits better boundary recall.

5. CONCLUSION

This paper introduced the ordinal linear discriminant analysis
(OLDA) method for learning feature projections to improve
time-series clustering. The proposed latent structural repeti-
tion features provide a convenient, fixed-dimensional repre-
sentation of global song structure, which facilitates modeling
across multiple songs.
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