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Abstract

Metric learning algorithms produce a linear
transformation of data which is optimized for
a prediction task, such as nearest-neighbor
classification or ranking. However, when the
input data contains a large portion of non-
informative features, existing methods fail
to identify the relevant features, and per-
formance degrades accordingly. In this pa-
per, we present an efficient and robust struc-
tural metric learning algorithm which enforces
group sparsity on the learned transformation,
while optimizing for structured ranking out-
put prediction. Experiments on synthetic
and real datasets demonstrate that the pro-
posed method outperforms previous methods
in both high- and low-noise settings.

1. Introduction

Metric learning algorithms produce a (linear) trans-
formation optimized to yield small distances between
similar pairs of points, and large distances between
dissimilar pairs of points (Xing et al., 2003; Weinberger
et al., 2006; Davis et al., 2007). The transformation
is usually optimized for a specific task, such as visu-
alization or k-nearest-neighbor classification. More
generally, structural metric learning algorithms opti-
mize for the prediction of structured outputs induced by
the learned transformation, such as nearest-neighbor
rankings (McFee & Lanckriet, 2010) or connectivity
graphs (Shaw et al., 2011).

In the usual setting, data is provided as a collection
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of vectors xi ∈ Rd, and the squared distance function
(xi − xj)TW (xi − xj) is parameterized by a positive
semidefinite matrix W , which is optimized to satisfy a
set of pairwise similarity or structural constraints. It
is often desirable that W be low-rank, as this limits
model complexity, exploits correlations between fea-
tures, and often improves predictive accuracy. When
W is low-rank, distances are equivalently computed in
a low-dimensional subspace of Rd, effectively providing
output sparsity (i.e., sparsity after transformation) and
allowing for efficient storage and retrieval. Previous
work on sparse metric learning focuses on this notion
of output sparsity (Ying et al., 2009).

However, input sparsity can be equally important to
achieving good performance: in general, the input data
may contain a significant amount of irrelevant fea-
tures which should be detected and suppressed by the
learning algorithm. In such cases, there will always
exist a linear transformation which suppresses the non-
informative features (i.e., by setting the corresponding
entries of W to 0) and one would hope that a met-
ric learning algorithm should find it. Unfortunately,
existing algorithms frequently fail to find such a trans-
formation, and their performance degrades rapidly as
the number of noisy features increases.

In this paper, we propose a robust extension to the
metric learning to rank (MLR) algorithm (McFee &
Lanckriet, 2010). The proposed method imposes a
group sparsity penalty on the learned metric to pro-
mote input sparsity, and a trace penalty to promote
output sparsity. We derive an efficient learning algo-
rithm based upon the 1-slack structural SVM (Joachims
et al., 2009) and the alternating direction method of
multipliers (ADMM) (Boyd et al., 2011). Our experi-
ments demonstrate that even a very simple noise model
can dramatically reduce performance of existing meth-
ods, while the proposed method correctly identifies and
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suppresses noisy features.

1.1. Related work

Supervised metric learning is a well-studied problem,
of which some representative methods are information-
theoretic metric learning (ITML) (Davis et al., 2007),
large margin nearest neighbor (LMNN) (Weinberger
et al., 2006), and the method of Xing et al. (2003).
However, many of these methods do not explicitly
regularize for low rank (i.e., sparsity in the projected
space) or sparsity of input features. For example, the
log det regularizer of ITML constrains W to be strictly
positive definite, which in practice often results in high-
rank solutions which necessarily depend on all input
features, including noisy ones. LMNN may output a
low-rank metric, though it does not explicitly regularize
for it.

Ying et al. (2009) proposed a mixed-norm regularized
metric learning algorithm to achieve dimensionality
reduction (i.e., output sparsity). However, their for-
mulation applies the regularization after a (dense) ro-
tation of the input feature space, and therefore does
not promote sparsity with respect to the input features.
Low-rank regularization is used in many metric learn-
ing algorithms (Shen et al., 2009; McFee & Lanckriet,
2010; Huang et al., 2011), but these methods do not
regularize for feature sparsity.

Rosales & Fung (2006) regularize for sparsity in the in-
put space by minimizing

∑
i,j |Wij |. Their formulation

additionally restricts W to the set of diagonally domi-
nant matrices, which allows for an efficient formulation
as a linear programming problem, but tends to favor
high-rank solutions.

Other robust metric learning formulations have been
proposed in which the similarity constraints or labels
have been corrupted, rather than the features. Huang
et al. (2010) developed an algorithm for the case where
a fraction of the similarity constraints are corrupted.
Similarly, Zha et al. (2009) leverage auxiliary data to
learn a metric when the constraint set is sparse.

1.2. Preliminaries

Let Sd and Sd+ denote the sets of d×d, real-valued,
symmetric and positive semidefinite matrices. Let
ΠS [x] denote the orthogonal projection of x onto a
convex set S. For matrices A,B, denote the Frobe-
nius inner product by 〈A,B〉F ··=

∑
i,j AijBij , and

norm by ‖A‖F ··=
√
〈A,A〉F. Finally, for x ∈ R, let

[x]+ ··= max(0, x).

2. Robust Metric Learning

In this paper, we will build upon the metric learning
to rank (MLR) algorithm (McFee & Lanckriet, 2010),
a variant of the structural SVM (Tsochantaridis et al.,
2005) which optimizes W ∈ Sd+ to minimize a ranking
loss function ∆ : Y × Y → R+ (e.g., decrease in mean
average precision) over permutations Y induced by
distance.

MLR can be expressed as the following convex opti-
mization problem:

min
W∈Sd+

tr(W ) +
C

n

∑
q∈X

ξq (1)

s. t.∀q ∈ X , y ∈ Y :
〈W,ψ(q, yq)− ψ(q, y)〉F ≥ ∆(yq, y)− ξq

Here, X ⊂ Rd is the training set of n points; Y is the
set of all permutations over X ; C > 0 is a slack trade-
off parameter; ψ : Rd × Y → Sd is a feature encoding
of an input-output pair (q, y); and ∆(yq, y) ∈ [0, 1] is
the desired margin, i.e., loss incurred for predicting
a ranking y rather than the true ranking yq. The
feature map ψ (Joachims, 2005) is designed so that
〈W,ψ(q, y)〉F is large when the ranking of X induced
by distance from q agrees with y, and small otherwise.
For a query q ∈ Rd with relevant set X+

q ⊆ X and
irrelevant set X−q ⊆ X , ψ is defined by

ψ(q, y) :=
∑
i∈X+

q

∑
j∈X−

q

yij
φ(q, xi)− φ(q, xj)

|X+
q | · |X−q |

,

φ(q, x) := −(q − x)(q − x)T,

yij :=

{
+1 i ≺y j
−1 otherwise

.

The regularization term tr(W ) in (1) is used as a convex
surrogate for rank(W ) to promote low-rank solutions.
However, because it ignores the off-diagonal elements
of W , it does not necessarily promote feature sparsity,
and performance can degrade with the addition of non-
informative features.

2.1. Robust MLR

Ideally, we would like the learning algorithm to produce
a metric W which relies only upon informative fea-
tures. More precisely, if some input dimension i is non-
informative, then the corresponding rows and columns
of W should suppress the feature, i.e., Wi· = W·i = 0.
In contrast, sparsity should not be enforced for rows
corresponding to informative features, as this would
limit the ability of the algorithm to exploit correlation
between informative features, and reduce output spar-
sity. This suggests a natural row (or column) grouping
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Algorithm 1 Robust metric learning to rank (R-MLR)

1: A ← {}
2: repeat
3: W ← argminW∈Sd+ f(W )

f(W ) := tr(W ) + λ‖W‖2,1
+ C max

(∆,Ψ)∈A
[∆− 〈W,Ψ〉F]+ (3)

4: ξ ← max
(∆,Ψ)∈A

[∆− 〈W,Ψ〉F]+

5: ∆̂← 0, Ψ̂← 0
6: for q = 1, 2, . . . , n do
7: y′ ← argmax

y∈Y
∆(yq, y) + 〈W,ψ(q, y)〉F

8: ∆̂← ∆̂ + 1/n∆(yq, y
′)

9: Ψ̂← Ψ̂ + 1/n (ψ(q, yq)− ψ(q, y′))
10: end for
11: A ← A∪

{
(∆̂, Ψ̂)

}
12: until ∆̂− 〈W, Ψ̂〉F ≤ ξ + ε

of the entries of W when enforcing sparsity, so that rows
corresponding to informative features may be dense,
but sparsity is enforced over rows to avoid relying upon
too many features.

As in the group lasso, row-sparsity can be promoted
by mixed-norm regularization (Yuan & Lin, 2006):

‖W‖2,1 ··=
d∑
i=1

‖Wi·‖2.

This leads to our Robust Metric Learning to Rank (R-
MLR) formulation:

min
W∈Sd+

tr(W ) + λ‖W‖2,1 +
C

n

∑
q∈X

ξq (2)

s. t.∀q ∈ X , y ∈ Y :
〈W,ψ(q, yq)− ψ(q, y)〉F ≥ ∆(yq, y)− ξq

R-MLR balances the trade-off between input and out-
put sparsity through a hyper-parameter λ > 0, which
may be tuned by cross-validation.

As there are a super-exponential number of constraints
in 2, we implement the 1-slack cutting-plane method
(Joachims et al., 2009) to obtain Algorithm 1. Al-
gorithm 1 approximates (2) by alternately solving a
convex optimization problem (step 3) over a small set
A of active constraints, and updating A with the con-
straints most violated by the resulting W (steps 5–10).
The process repeats until the most-violated constraint
(and hence, all other constraints) is satisfied to within
some specified ε > 0 of the loss on the active set A.

3. Optimization

The original MLR implementation solved for W via
projected sub-gradient descent (McFee & Lanckriet,
2010). While this approach could be applied for R-
MLR as well, projecting each iterate back onto Sd+ is
computationally expensive: O(d3) for each spectral
decomposition and thresholding operation. Instead, we
will use the alternating direction method of multipli-
ers (Boyd et al., 2011) to efficiently optimize (3).

First, we transform the optimization problem (Algo-
rithm 1, step 3) into an equivalent problem:

min
W,V,Z

f(W ) + g(V ) + h(Z) s. t. W = V = Z

where f(W ) ··= tr(W ) + C ·max
(∆,Ψ)∈A

[∆− 〈W,Ψ〉F]+

g(V ) ··=λ‖V ‖2,1, h(Z) ··=

{
0 Z ∈ Sd+
∞ Z /∈ Sd+

Introducing Lagrange multipliers ΛV ,ΛW ∈ Sd, we
obtain the augmented Lagrangian:

Lρ(W,V,Z,ΛW ,ΛV ) =f(W ) + g(V ) + h(Z)

+〈ΛW ,W − Z〉F +
ρ

2
‖W − Z‖2F

+〈ΛV , V − Z〉F +
ρ

2
‖V − Z‖2F,

where ρ > 0 is a scaling parameter. The ADMM
algorithm can be written in scaled form as follows:

W t+1 ← argmin
W∈Sd

f(W ) +
ρ

2
‖W − (Zt − U tW )‖2F(4)

V t+1 ← argmin
V ∈Sd

g(V ) +
ρ

2
‖V − (Zt − U tV )‖2F (5)

Zt+1 ← argmin
Z∈Sd

h(Z)

+ ρ ‖Z − 1
2 (W t+1 + V t+1 + U tW + U tV )‖2F

U t+1
W ← U tW +W t+1 − Zt+1;

U t+1
V ← U tV + V t+1 − Zt+1.

where UW = 1
ρΛW , UV = 1

ρΛV . The optimization
algorithm then cycles through each update listed above
until convergence, or some maximum number of itera-
tions is exceeded.

3.1. W -update: dual formulation

The W -update (4) is a convex optimization problem
similar to (3) with two modifications: 1) the constraint
W ∈ Sd+ has been removed, and 2) it is strongly convex,
due to the quadratic term from Lρ. In principle, this
could be solved directly. However, the active set A
is often quite small: in practical problems, |A| rarely
exceeds 100–200, while the number of parameters is
O(d2) and can easily number in the tens of thousands.
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This suggests that a dual formulation may lead to a
more efficient algorithm.

To simplify the following derivation, let Rt ··= Zt−U tW
and m ··= |A|. The W update (4) can be stated as the
following linearly constrained quadratic program:

min
W,ξ≥0

tr(W ) + Cξ +
ρ

2
‖W −Rt‖2F (6)

s. t.∀(∆i,Ψi) ∈ A : ∆i − 〈W,Ψi〉F − ξ ≤ 0.

Introducing Lagrange multipliers α ∈ Rm+ , β ∈ R+, (6)
has the following Lagrangian:

L(W, ξ, α, β) = tr(W ) + Cξ +
ρ

2
‖W −Rt‖2F

+

m∑
i=1

αi (∆i − 〈W,Ψi〉F − ξ)− βξ

Minimizing over W , we obtain the dual program:

sup
α∈Rm

+

β∈R+

inf
W,ξ
L =

1

ρ
max
α∈Rm

+

−1

2
αTHα− bTα

s. t.
∑
i

αi ≤ C, (7)

with the structure kernel H ∈ Sm+ and cost vector
b ∈ Rm defined as:

Hij ··= 〈Ψi,Ψj〉F, bi ··= 〈ρRt − I,Ψi〉F − ρ∆i. (8)

(7) is a linearly constrained quadratic program in m
variables, and can easily be solved by off-the-shelf tools.
Note that the dual program is independent of both n
and d, resulting in significant improvements in efficiency
for large problems. After computing a dual optimum α,

a primal optimum W
t+1

can be recovered as follows:

W
t+1

= Rt +
1

ρ

(
m∑
i=1

αiΨi − I

)
. (9)

3.2. V -update

If there was no symmetry constraint in (5), the
V -update would take the form of a prox-operator
prox`2,1(Zt − U tV , λ/ρ), where prox`2,1(A, λ) ··=
argminV λ‖V ‖2,1 + 1

2‖V −A‖
2
F. This can be efficiently

computed via an element-wise thresholding operation[
prox`2,1(A, λ)

]
ij

= Aij

[
1− λ

‖Ai·‖2

]
+

(10)

where Ai· is the ith row of A (Kowalski, 2009). However,
this results in an asymmetric matrix, so we compute
the Sd-constrained V t+1 update via a separate ADMM
algorithm, which alternates a prox`2,1 update step, a
projection ΠSd(·) and an additive dual update, each of
which can be computed in linear time.

Algorithm 2 Robust MLR (step 3 of Algorithm 1)

1: W 0 ← 0, V 0 ← 0, Z0 ← 0, U0
W ← 0, U0

V ← 0
2: for t = 0, 1, 2, . . . , T (until convergence) do
3: ∀i : bi ← 〈ρ(Zt − U tW )− I,Ψi〉F − ρ∆i

4: α← argmaxα(7)
5: W t+1 ← Zt − U tW + 1/ρ (

∑m
i=1 αiΨi − I)

6: V t+1 ← argmin
V ∈Sd

g(V ) + ρ
2‖V − (Zt − U tV )‖2F;

7: Zt+1 ← ΠSd+

[
1
2 (W t+1 + V t+1 + U tW + U tV )

]
8: U t+1

W ← U tW +W t+1 − Zt+1

9: U t+1
V ← U tV + V t+1 − Zt+1

10: end for
output WT

3.3. Z-update

The Z-update simplifies to the orthogonal projection

Zt+1 ← ΠSd+

[
1
2 (W t+1 + V t+1 + U tW + U tV )

]
,

obtained by thresholding the negative eigenvalues of[
1
2 (W t+1 + V t+1 + U tW + U tV )

]
at 0.

After consolidating the update steps, the resulting Ro-
bust MLR algorithm is listed as Algorithm 2.

To see the performance gains afforded by the ADMM-
based method, we note that by setting λ = 0 and skip-
ping the V -update, we can obtain an ADMM-based
algorithm to solve the MLR problem, which we call
MLR-ADMM. This allows us to do a direct comparison
between the ADMM-based MLR method and the orig-
inal solver which used projected sub-gradient descent.
Although the ADMM-based algorithm has the same
worst-case complexity as projected sub-gradient descent
– O(ε−2) for ε-sub-optimality – it has been observed
to yield satisfactory solutions after a small number of
steps. Coupled with early stopping (i.e. specifying
a maximum number of iterations T for the ADMM
algorithm), we were able to obtain significant speedups
over projected gradient descent in our experiments.

4. Experiments

To evaluate the proposed method, we conducted three
sets of experiments. In the first set of experiments,
we augment standard UCI datasets with synthetic cor-
related noise of varying dimensions to investigate the
classification performance of various metric learning
algorithms as noisy features are introduced. In the sec-
ond set of experiments, we evaluate R-MLR on a music
similarity task using data from CAL10K (Tingle et al.,
2010) and the Million Song Dataset (MSD) (Bertin-
Mahieux et al., 2011), and also evaluate the effects of
early stopping on training time. In the third set of ex-
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periments, we evaluate performance and training time
of the various algorithms on an image classification
task using image data obtained from ImageNet (Deng
et al., 2009).

In all sets of experiments, we also provide comparisons
to `1-MLR, another variant of MLR which imposes a
penalty on

∑
i,j |Wij | instead of ‖W‖2,1 in (3), as a

similar regularizer has been shown to be effective in
promoting feature sparsity by Rosales & Fung (2006).
`1-MLR can be trained via an ADMM algorithm in a
similar fashion to R-MLR, and in fact allows for an ef-
ficient element-wise thresholding for the corresponding
V -update. To train MLR, we used the MLR-ADMM
algorithm instead of the original projected sub-gradient
descent implementation.

4.1. Classifying noise-augmented UCI data

As a first experiment, we measure classifica-
tion performance on four standard datasets from
the UCI repository: Balance (n = 625, d = 4),
Ionosphere (n = 351, d = 34), Iris (n = 150, d = 4)
and Wine (n = 178, d = 13). We compare large-margin
nearest neighbor (LMNN) (Weinberger et al., 2006),
information-theoretic metric learning (ITML) (Davis
et al., 2007), and MLR with both `1-MLR and R-MLR.
Each of the previously proposed algorithms are known
to perform comparably well on these datasets, and in-
troducing noise will allow us to carefully measure how
performance degrades in higher dimensions relative to
a known baseline (the noise-free case).

4.1.1. Experiment setup

To study the effect of noisy features on each learning
algorithm, we embedded each dataset into a higher-
dimensional space by padding each example xi with
D-dimensional correlated noise xσ:

xTi 7→
(
xTi , x

T
σ

)
∈ Rd+D, xσ ∼ N (0,Σ). (11)

For each dataset and D ∈ {25, 26, 27, 28}, we sample a
covariance matrix Σ ∈ SD+ from a unit-scale Wishart
distribution. Each example was padded with noise
according to (11). Each padded dataset was then split
into 25 random 40/30/30 training/validation/test splits,
and each split was normalized by coordinate-wise z-
scoring with the training set statistics.

Performance was measured by k-nearest-neighbor ac-
curacy using the training set as examples. For ITML,
the slack parameter γ was varied over {1, 10, . . . , 106}
For LMNN, the push-pull parameter µ was varied over
{0.1, 0.2, . . . , 0.9}. For MLR, the loss function ∆ was
fixed to mean average precision (MAP), and C was
varied over {1, 10, . . . , 106}. For R-MLR and `1-MLR

we additionally varied λ ∈ {0.001, 0.01, 0.1, 1}. The
number of nearest neighbors used for classification k
was also varied in {1, 3, 5, 7}. For each experiment, the
hyper-parameters with the best classification accuracy
on the validation set are selected.

4.1.2. Results

Figure 1 displays example W s produced by ITML,
LMNN, MLR, `1-MLR and R-MLR on each UCI
dataset, where the noise dimensionality D is set to 32.
In each case, R-MLR correctly identifies and suppresses
the noise dimensions by assigning small weights to the
corresponding rows and columns of W . In contrast,
MLR, ITML and LMNN assign significant weights to
the noisy dimensions, degrading classification and re-
trieval performance. `1-MLR achieves input sparsity,
but only at the expense of increased dimension.

Figure 2 displays the error rates of the various learning
algorithms across all datasets and values of D. We
observe that R-MLR is able to achieve performance
on par with other state-of-the-art algorithms even in
the noiseless case. For all datasets and D ≥ 64, the R-
MLR algorithm significantly outperforms MLR, ITML
and LMNN under a Bonferroni-corrected Wilcoxon
signed rank test (α = 0.05). R-MLR also significantly
outperforms `1-MLR for Ionosphere, D = {128,256}
and Balance for D = 128.

Figure 3 illustrates the effective dimensionality E —
the number of dimensions necessary to capture 95% of
the spectral mass of W — averaged across all splits of
each UCI dataset. Effective dimensionality increases
with input dimensionality for ITML and LMNN, but
remains low for both MLR and R-MLR. `1-MLR lies in
between, producing metrics of higher rank than MLR
or R-MLR.

Across all UCI datasets, R-MLR training time was
observed to be on the same order of magnitude as
MLR-ADMM, and is consistently shorter than LMNN
training time. It is still possible to accelerate our
method further by using standard techniques, e.g. par-
allelizing the constraint generation process, or sampling
to approximate the most-violated constraint.

4.2. Music similarity: CAL10K

In the music similarity task, we are provided with vector
representations of song recordings, and the goal is to
learn a distance (retrieval) function which successfully
retrieves relevant songs in response to a query. We use
a subset of the CAL10K dataset (Tingle et al., 2010),
which is provided as ten 40/30/30 splits of a collection
of 5419 songs (McFee et al., 2012). For each song xi,
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Figure 1. Metrics (W ) produced by each algorithm on each UCI dataset padded with 32-dimensional noise generated by
(11). For each dataset, d represents the number of features in the original data, and E is the effective dimensionality of W .
R-MLR produces sparse, low-rank solutions that correctly identify the informative features (upper-left block), while other
algorithms assign significant weight to the noisy dimensions, resulting in dense or high-rank solutions.

a relevant set X+
i ⊂ Xtrain is defined as the subset of

songs in the training set performed by the top 10 most
similar artists to the performer of xi, where similarity
between artists is measured by the number of shared
users in a sample of collaborative filter data (McFee
et al., 2012). This top-10 thresholding results in the
relevant sets in this data being generally asymmetric
and non-transitive, and therefore pair-wise methods
such as ITML and classification-based methods like
LMNN cannot be applied to the problem. Performance
is measured by area under the ROC curve (AUC) of
the rankings over the training set induced by distance
from a test query.

4.2.1. Experiment setup

We experiment with three song representations, derived
from either audio features or lyrical content:

Audio Each song is initially represented as a vector

quantization histogram over 1024 acoustic code-
words. Histograms were then compressed via PCA
to capture 95% of the training set variance. A to-
tal of 5419 songs are available in the dataset, and
each train/validation/test split retains between
160 and 180 dimensions after PCA.

Lyrics-128, Lyrics-256 1396 of the songs above also
have lyrics data available in MSD. We applied
Latent Dirichlet Allocation (Blei et al., 2003) on
an independent collection of 2000 songs, resulting
in k ∈ {128, 256} latent lyrics topics. Each song
was then represented by its posterior distribution
over topics.

MSD-33 Using the Million Song Dataset, we ex-
tracted 33 additional descriptors for each song,
including coarse low-level descriptors such as mean
timbre, pitch distribution, tempo and loudness, as
well as abstract high-level features, such as “dance-
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Figure 2. Accuracy of ITML, LMNN, MLR-ADMM and R-
MLR as D noisy dimensions are introduced to UCI datasets.
Results are averaged across 25 random splits. In all datasets,
for D ≥ 64, R-MLR significantly outperforms MLR, ITML
and LMNN.

ability”, “song hotttnesss”, and artist latitude and
longitude. These features are generally less pure
than the audio and lyrics, but may carry some
useful information.

Using the audio and lyrics representations, we com-
pared the performance of MLR, `1-MLR, and R-MLR,
first on the audio and lyrics representations, and then
after including the MSD-33 features. For this experi-
ment, we vary C ∈ {10−1, · · · , 104} and fix ∆ to AUC
(area under the ROC curve). For R-MLR and `1-MLR,
we additionally vary λ ∈ {0.001, 0.01, 0.1, 1}. For each
experiment, the hyper-parameters with the best AUC
performance on the validation set are selected.

To investigate the performance gains afforded by us-
ing the ADMM-based algorithm, we compared MLR-
ADMM to the original MLR implementation (MLR-
Proj) on the Audio music similarity task, with the same
experimental protocol as above. For MLR-ADMM, the
maximum number of iterations T was additionally var-
ied in {1, 5, 10, 25, 50, 100}. We tracked performance
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Figure 3. Mean effective dimensionality of learned metrics
as dimensionality increases. For all datasets, MLR produces
the lowest-dimensionality solutions across all values of D,
while R-MLR slightly increases dimensionality due to the
tradeoff between the low-rank and robust objectives. For
LMNN and ITML, effective dimensionality scales with D
across all datasets.

as well as as the number of projection operations onto
Sd+ and calls to the constraint generator, which are the
two key bottlenecks during training.

4.2.2. Results

Figure 4 shows the average AUC of each algorithm
across 10 folds. When MSD-33 features are included,
R-MLR does significantly better than MLR under a
Wilcoxon signed-rank test (α = 0.05). Moreover, even
in the original audio or lyrics features where the mo-
tivating assumption of noisy features may not hold,
R-MLR does at least as well or better than MLR.

In these experiments, we noted that the metrics
produced by `1-MLR tend to be strongly diagonal,
with very few significant off-diagonal terms (due to
the element-wise sparse regularizer). This may over-
penalize weakly informative features, and limit the
ability to exploit correlations between features. On the
other hand, the group sparsity regularizer of R-MLR
tends to produce solutions with denser rows, which
better enables the algorithm to exploit feature correla-
tions, leading to improved accuracy. In the experiments
with MSD-33 features, we observed that the metrics
learnt by MLR generally assign large weights to major-
ity of the MSD-33 features, while the solutions learnt
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Figure 4. Music similarity performance of each algorithm on
the three feature representations Lyrics-128, Lyrics-256 and
Audio, with and without MSD-33 features. Performance
was measured by AUC and averaged across 10 folds.
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Figure 5. Performance of MLR-ADMM and MLR-Proj for
the music similarity task with Audio features (best viewed in
color). Top: accuracy versus the number of projections onto
Sd
+ as the maximum number of ADMM steps T is increased.

Bottom: average number of cutting planes required for each
value of T . Results are averaged across ten splits; error
bars correspond to ±1 standard deviation.

by R-MLR tended to suppress all but a few MSD-33
features.

The results of the early stopping experiment are pre-
sented in Figure 5. MLR-ADMM performs comparably
to MLR-Proj across all values of T , and for small
values of T , MLR-ADMM requires significantly fewer
projection operations than MLR-Proj. For T = 1, the
W returned at each step can be highly sub-optimal,
and as a result, more cutting planes are required to
converge. However, for intermediate values of T , the
number of cutting planes does not significantly differ

from MLR-Proj, and speedup is directly proportional
to the decrease in projections.

4.3. Image Classification

In the image classification task, we compare the classi-
fication performance and training time of various algo-
rithms. 100 images were chosen from each of 20 cate-
gories (classes) from the ImageNet repository, and each
image was represented using 1000-dimensional code-
word histograms obtained from the ImageNet database.
For this experiment, the data set was split into 5 folds
of 60/20/20, and the same hyper-parameter values were
used as in Section 4.1. The early-stopping parameter
T was fixed to 10 for all ADMM-based algorithms.
As in the early stopping experiment, we recorded the
mean accuracy and training time only for the best
hyper-parameter settings for each fold.

4.3.1. Results

The results of the image classification task are shown
in Table 1. The ADMM-based algorithms take signifi-
cantly less time to run and achieve comparable accuracy
to the existing methods, in particular MLR-Proj.

Table 1. Mean test set 3-NN accuracy and training time for
the image classification task.

Algorithm Accuracy Time (h)
ITML 30.5% 4.67
LMNN 36.0% 8.82
MLR-Proj 36.7% 12.62
MLR-ADMM 37.5% 1.32
L1-MLR 37.7% 1.74
R-MLR 38.7% 1.55

5. Conclusion

We proposed a robust extension to the metric learning
to rank algorithm, and derived an efficient learning
algorithm. Our experiments demonstrate that by regu-
larizing for both input and output sparsity, the R-MLR
algorithm detects and suppresses noisy features, and
outperforms previous methods in both low- and high-
noise settings.
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