
THE NATURAL LANGUAGE OF PLAYLISTS

Brian McFee
Computer Science and Engineering
University of California, San Diego

Gert Lanckriet
Electrical and Computer Engineering
University of California, San Diego

ABSTRACT

We propose a simple, scalable, and objective evaluation pro-
cedure for playlist generation algorithms. Drawing on stan-
dard techniques for statistical natural language processing,
we characterize playlist algorithms as generative models of
strings of songs belonging to some unknown language. To
demonstrate the procedure, we compare several playlist algo-
rithms derived from content, semantics, and meta-data. We
then develop an efficient algorithm to learn an optimal combi-
nation of simple playlist algorithms. Experiments on a large
collection of naturally occurring playlists demonstrate the
efficacy of the evaluation procedure and learning algorithm.

1. INTRODUCTION

Music listeners typically do not listen to a single song in
isolation. Rather, listening sessions tend to persist over a
sequence of songs: a playlist. The increasing quantity of
readily available, digital music content has motivated the
development of algorithms and services to automate search,
recommendation, and discovery in large music databases.
However, playlist generation is fundamental to how users
interact with music delivery services, and is generally distinct
from related topics, such as similarity and semantic search.

Although many automatic playlist generation algorithms
have been proposed over the years, there is currently no
standard evaluation procedure. As a result, it is difficult to
quantitatively compare different algorithms and objectively
determine if any progress is being made.

At present, the predominant approach to playlist algorithm
evaluation is to conduct human opinion surveys, which can
be expensive, time-consuming and difficult to reproduce.
Alternatively, current automated evaluation schemes either
reduce the problem to a (discriminative) information retrieval
setting, or rely on simplifying assumptions that may not hold
in practice.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

In this work, we propose a simple, scalable, and objec-
tive evaluation procedure for playlist algorithms that avoids
the pitfalls of previous approaches. Our approach is guided
by the observation that playlist generation is not (only) an
information retrieval problem, but a language modeling prob-
lem. The proposed method can be applied to a large class of
playlist algorithms, and we provide several examples with
experimental results. Finally, we propose an algorithm to
learn an optimal ensemble algorithm from a collection of
simple playlist generators.

2. A BRIEF HISTORY OF PLAYLIST EVALUATION

Although many algorithms for playlist generation have been
proposed, evaluation procedures have received relatively lit-
tle specific attention. Here, we briefly summarize previously
proposed evaluation strategies, which can broadly be grouped
into three categories: human evaluation, semantic cohesion,
and sequence prediction. This section is not intended as a
comprehensive survey of playlist algorithms, for which we
refer the interested reader to [8, chapter 2].

2.1 Human evaluation

Since the eventual goal of playlist algorithms is to improve
user experience, the ideal method of algorithm evaluation
is to directly measure human response. Numerous studies
have been conducted in which test subjects rate the quality
of playlists generated by one or more algorithms. Pauws
and Eggen [18] asked users to provide a query song with a
particular context-of-use in mind (e.g., lively music), which
was used as a seed to generate a playlist. The user evaluated
the resulting playlist on a scale of 1–10, and how many tracks
in the playlist fit the user’s intended use context. From these
survey responses, the authors were able to derive various
statistics to demonstrate that their proposed algorithm signif-
icantly outperforms randomly generated playlists. Similarly,
Barrington, et al. [1] conducted experiments in which users
were presented with two playlists (generated by obscured,
competing systems) and asked to indicate which one was
(subjectively) better, and why.

While direct human evaluation studies can provide evi-
dence that one algorithm measurably outperforms another,
they also have obvious practical limitations. This can be labo-
rious, difficult to reproduce, and may require large numbers

of test subjects and example playlists to achieve statistically
meaningful results and overcome the effects of subjectivity.

2.2 Semantic cohesion

The general impracticality of large-scale user studies has
motivated the development of automated evaluation tech-
niques. The most common approaches compute some easily
measurable quantity from each song in a generated playlist
(e.g., artist, album, or genre), which is used to determine
the cohesion of the playlist. Cohesion may be defined by
frequency counts of meta-data co-occurrence (e.g., songs
by the same artist) [13, 14] or entropy of the distribution of
genres within the playlist [7, 12]. In this framework, it is
typically assumed that each song can be mapped to a unique
semantic tag (e.g., blues). This assumption is often unreal-
istic, as songs generally map to multiple tags. Assigning
each song to exactly one semantic description may therefore
discard a great deal of information, and obscure the semantic
content of the playlist. A more general form of semantic
summarization was developed by Fields, et al. [9], and used
to derive a distance measure between latent topic models of
playlists. However, it is not immediately clear how such a
distance metric would facilitate algorithm evaluation.

Issues of semantic ambiguity aside, a more fundamental
flaw lies in the assumption that cohesion accurately charac-
terizes playlist quality. In reality, this assumption is rarely
justified, and evidence suggests that users often prefer highly
diverse playlists [20].

2.3 Sequence prediction

A more direct approach to automatic evaluation arises from
formulating playlist generation as a prediction problem: given
some contextual query (e.g., a user’s preferences, or a partial
observation of songs in a playlist), the algorithm must predict
which song to play next. The algorithm is then evaluated on
the grounds of its prediction, under some notion of correct-
ness. For example, Platt, et al. [19] observe a subset of songs
in an existing playlist (the query), and the algorithm predicts
a ranking of all songs. The quality of the algorithm is then
determined by the position within the predicted ranking of
the remaining, unobserved songs from the playlist. Mail-
let, et al. [15] similarly predict a ranking over songs from a
contextual query — in this case, the preceding song or pair
of songs — and evaluate by comparing the ranking to one
derived from a large collection of existing playlists.

Essentially, both of the above approaches transform playlist
evaluation into an information retrieval (IR) problem: songs
observed to co-occur with the query are relevant, and all
other songs as irrelevant. As noted by Platt, et al. [19], this
notion of relevance may be exceedingly pessimistic in prac-
tice due to sparsity of observations. In even moderately large
music databases (say, on the order of thousands of songs), the
probability of observing any given pair of songs in a playlist

becomes vanishingly small, and therefore, the overwhelming
majority of song predictions are considered incorrect. In
this framework, a prediction may disagree with observed
co-occurrences, but still be equally pleasing to a user of the
system, and therefore be unfairly penalized.

The IR approach — and more generally, any discrimina-
tive learning approach — is only applicable when one can
obtain negative examples, i.e., bad playlists. In reality, nega-
tive examples are difficult to define, let alone obtain, as users
typically only share playlists that they like. 1 This suggests
that discriminative evaluation may not be the most natural fit
for playlist generation.

3. A NATURAL LANGUAGE APPROACH

In contrast to discriminative approaches to playlist evalua-
tion, we advocate the generative perspective when modeling
playlist composition. Rather than attempting to objectively
score playlists as good or bad, which generally depends on
user taste and unobservable contextual factors, we instead
focus on modeling the distribution of naturally occurring
playlists.

Formally, let X = {x1, x2, . . . , xn} denote a library of
songs. We define a playlist as an ordered finite sequence of
elements ofX . Any procedure which constructs such ordered
sequences is a playlist algorithm (or playlister). In general,
we consider randomized algorithms, which can be used to
generate multiple unique playlists from a single query. Each
playlister, be it randomized or deterministic, induces a prob-
ability distribution over song sequences, and may therefore
be treated as a probabilistic generative model.

This leads to our central question: how should generative
models of song sequences be evaluated? Here, we take in-
spiration from the literature of statistical natural language
processing [16], in which statistical models are fit to a sample
of strings in the language (e.g., grammatically valid sentences
in English). A language model determines a probability dis-
tribution P over strings, which can be evaluated objectively
by how well P matches the true distribution P∗. Since P∗
is unknown, this evaluation is approximated by drawing a
sample S ∼ P∗ of naturally occurring strings, and then
computing the likelihood of the sample under the model P.

Returning to the context of playlist generation, in place
of vocabulary words, we have songs; rather than sentences,
we have playlists. The universe of human-generated playlists
therefore constitutes a natural language, and playlisters are
models of the language of playlists. While this observation
is not itself novel — it appears to be folklore among music
researchers — its implications for algorithm evaluation have
not yet been fully realized. We note that recent work by
Zheleva, et al. [21] evaluated playlisters in terms of perplexity

1 A notable exception is the work of Bosteels, et al. [4], in which explicit
negative feedback was inferred from skip behavior of Last.fm users. As
noted by the authors, skip behavior can be notoriously difficult to interpret.

(exponentiated log-likelihood) of the genre distribution in a
playlist, rather than the song selection itself.

3.1 Evaluation procedure

To evaluate a playlister A, we require the following:

1. a library of n songs X ,
2. a sample of playlists S ⊆ X ∗, 2 and
3. the likelihood PA[s] of any playlist s ∈ X ∗.

While the last requirement may seem like a tall order, we
will demonstrate that for large classes of playlisters, the
computation can be quite simple.

A playlister A can be evaluated by computing the average
log-likelihood of the sample S:

L(S | A) =
1

|S|
∑
s∈S

logPA[s]. (1)

The average log-likelihood, on an absolute scale, is not
directly interpretable — although it approximates the cross-
entropy between PA and the true, unknown distribution
P∗ [16] — but it is useful for performing relative compar-
isons between two playlisters. Given a competing playlister
A′, we can say that A is a better model of the data than A′ if
L(S | A) > L(S | A′).

There is a subtle, but important distinction between the
proposed approach and previous approaches to playlist eval-
uation. Rather than evaluate the perceived quality of a gen-
erated, synthetic playlist, we instead evaluate the algorithm
in terms of how likely it is to produce naturally occurring
playlists.

4. PLAYLIST ALGORITHMS

To demonstrate the proposed evaluation approach, we will
derive playlist probabilities for several generic playlisters.
Although the method is fully general, we restrict attention to
playlisters which satisfy the Markov property:

P [(x0, x1, . . . , xk)] =

P[X = x0]

k∏
i=1

P[Xt+1 = xi | Xt = xi−1]. (2)

We assume that the first song is chosen uniformly at ran-
dom, and therefore contributes a fixed constant log 1/n to the
overall log-likelihood, which may be safely ignored. The
likelihood of an arbitrary playlist under a Markov model
can therefore be decomposed into the product of bigram
likelihoods, so the log-likelihood is proportional to the sum:

logP [(x0, . . . , xk)] ∝
k∑
i=1

logP[Xt+1 = xi | Xt = xi−1].

2 X ∗ denotes the Kleene-∗ operation, and contains all sequences of any
length of elements drawn from X .

Note that this reasoning can be extended to higher order
Markov models — e.g., second order would decompose into
trigrams — but to ease exposition, we focus on first-order
models. For the remainder of this article, we will assume
that S is a collection of bigrams.

4.1 Uniform shuffle

The simplest playlister selects each song uniformly at ran-
dom from X . This can be refined somewhat by disallowing
consecutive repetitions, so that if the current song is xt, then
xt+1 is drawn uniformly at random from X \ {xt}. Since
xt+1 depends only on xt, it satisfies the Markov property,
and the conditional bigram probability is

PU [Xt+1 = x | Xt = xt] =

{
1/n−1 x 6= xt

0 x = xt
. (3)

The uniform shuffle playlister provides an obvious baseline,
and should be included in any comparative evaluation.

4.2 Weighted shuffle

A slight variation on the uniform shuffle is to draw the next
song not from a uniform distribution, but a weighted dis-
tribution derived from a score function F (x) > 0, which
may encode artist popularity, user preference, or any other
song-level property. The resulting bigram probability is

PF [Xt+1 = x | Xt = xt] =

{
F (x)∑

x′ 6=xt
F (x′) x 6= xt

0 x = xt
.

(4)
In general, F may be dynamic and can be used to incorporate
user feedback, thereby facilitating steerability [15]. Dynamic
and interactive evaluation is beyond the scope of this article,
and we focus on static score functions.

4.3 K-Nearest neighbor and random walks

Another simple strategy for playlist generation is to construct
a k-nearest-neighbor (kNN) graph over the song set by using
some previously constructed distance metric (e.g., acoustic,
semantic, or social similarity), and form playlists by a ran-
dom walk process on the graph. If the next song xt+1 is
chosen uniformly at random from the neighbors η(xt) of the
current song xt, then the bigram probability is

PkNN[Xt+1 = x | Xt = xt] =

{
1/k x ∈ η(xt)

0 x /∈ η(xt)
. (5)

One shortcoming of this approach — as well as any deter-
ministic playlister — is that it assigns 0 probability to some
transitions, in this case, those spanning non-adjacent nodes.
Any such transition would be infinitely unlikely under the
model; however, it seems unreasonable to expect that every
observed bigram coincides with an edge in the graph (unless

the graph is complete). This can be remedied by smoothing
with the uniform distribution (weighted by a constant µ):

P̂kNN = (1− µ)PkNN + µPU µ ∈ (0, 1] . (6)

Since probability distributions are closed under convex com-
binations, Eqn. (6) describes a valid distribution. Equiva-
lently, this models a process which flips a µ-biased coin to
decide whether to jump to an adjacent song in the graph, or a
random song in the library (adjacent or not). This modifica-
tion to the algorithm increases diversity and flexibility, and
ensures that log-likelihood computations remain finite.

4.4 Markov chain mixtures

Any non-trivial playlister requires some tuning of parameters.
For example, to implement kNN, one must select the under-
lying features and similarity metric, the neighborhood size
k, and the smoothing parameter µ. This leads to an obvious
question: can these parameters be optimized automatically?
More generally, if we start with a collection of playlisters
Ai (say, derived from different features [10, 12], values of
k, etc.), is it possible to intelligently integrate them to into a
single playlister?

Eqn. (6) exploits the fact that distributions are closed
under convex combinations to combine two distributions
(uniform and kNN) with fixed proportion µ. This can be
generalized to combine m distributions as follows:

Pµ =

m∑
i=1

µiPi ∀i : µi≥0,

m∑
i=1

µi = 1. (7)

Rather than using a fixed weighting µ = (µ1, µ2, . . . , µm),
we can instead optimize µ by maximizing the likelihood of
a collection of training examples under the mixture model.
This can be accomplished by solving the optimization prob-
lem listed as Algorithm 1. Because the objective function
(log-likelihood) is concave in µ, and the constraints are linear,
this problem can be solved efficiently [5].

After computing the maximum likelihood estimate µ,
playlists can be generated by sampling from the weighted
ensemble distribution Pµ. The distribution described by
Eqn. (7) characterizes the ensemble playlist algorithm listed
as Algorithm 2, which, given the current song xt, simply
selects a playlister Ai at random according to the discrete
distribution characterized by µ and returns a sample from the
selected distribution Pi[X | Xt = xt].

5. EXPERIMENTS

To demonstrate the proposed evaluation approach, we im-
plemented several playlisters on a large song library, us-
ing acoustic-, semantic-, and popularity-based descriptors.
The simple playlisters described here are merely intended to
demonstrate plausible baselines against which more sophisti-
cated algorithms may be compared in future work.

Algorithm 1 Markov chain mixture optimization
Input: Training bigrams

S ′ = {(x1, x′1), . . . , (x|S′|, x
′
|S′|)}

Markov chains P1,P2, . . . ,Pm
Output: Combination weights µ1, µ2, . . . , µm

max
µ

1

|S ′|
∑

(x,x′)∈S′

log

(
m∑
i=1

µiPi [Xt+1 = x′ | Xt = x]

)

s. t. ∀i : µi≥0,

m∑
i=1

µi = 1

Algorithm 2 Ensemble playlist generation
Input: Current song xt, playlisters (Ai,Pi), weights µi
Output: Next song xt+1

1: Sample i ∼ DISCRETE(µ) {Choose Ai}
2: return xt+1 ∼ Pi[Xt+1 | Xt = xt] {Run Ai(xt)}

5.1 Song data: Million Song Dataset

Our song data was taken from the Million Song Dataset
(MSD) [3], upon which we constructed models based on
artist terms (tags), familiarity, and audio content.

Tag representations were derived from the vocabulary of
7643 artist terms provided with MSD. Each song is repre-
sented as a binary vector indicating whether each term was
applied to the corresponding artist, and nearest neighbors are
determined by cosine-similarity between tag vectors.

The Echo Nest 3 artist familiarity is used to define a static
score function F over songs, which may be interpreted as a
surrogate for (average) user preference.

The audio content model was developed on the 1% Mil-
lion Song Subset (MSS), and is similar to the model proposed
in [17]. From each MSS song, we extracted the time series
of Echo Nest timbre descriptors (ENTs). This results in a
sample of approximately 8.5 million 12-dimensional ENTs,
which were normalized by z-scoring according to the esti-
mated mean and variance of the sample, randomly permuted,
and then clustered by online k-means to yield 512 acoustic
codewords. Each song was summarized by quantizing each
of its (normalized) ENTs and counting the frequency of each
codeword, resulting in a 512-dimensional histogram vector.
Each codeword histogram was mapped into a probability
product kernel (PPK) space [11] by square-rooting its entries,
which has been demonstrated to be effective on similar audio
representations [17]. Finally, we appended the song’s tempo,
loudness, and key confidence, resulting in a vector vi ∈ R515

for each song xi.
Next, we trained an optimized similarity metric over audio

descriptors. We computed target similarity for each pair of
MSS artists by the Jaccard index between their user sets in

3 http://developer.echonest.com

a sample of Last.fm 4 collaborative filter data [6, chapter 3].
Tracks by artists with fewer than 30 listeners were discarded.
The remaining artists were partitioned 80/20 into a training
and a validation set, and for each artist, we computed its
top 10 most similar training artists. The distance metric was
subsequently optimized by applying the metric learning to
rank (MLR) algorithm on the training set of 4455 songs,
and tuning parameters C ∈ {105, 106, . . . , 109} and ∆ ∈
{AUC, MRR, MAP, Prec@10} to maximize AUC score on
the validation set of 1110 songs. Finally, the resulting metric
W was factored by PCA (retaining 95% of spectral mass) to
yield a linear projection L ∈ R222×515 which maps each vi
into a Euclidean space in which nearest neighbor is optimized
to retrieve songs by similar artists.

5.2 Playlists: Art of the Mix

Playlist data was taken from the Art of the Mix 5 (AotM)
corpus collected by Berenzweig, et al. [2]. We chose this
corpus primarily for two reasons. First, it is the largest pub-
licly available set that we know of. Second, each playlist
was (ostensibly) generated by a user — not a recommenda-
tion service or commercial radio DJ — so the corpus is an
accurate sample of real playlists that occur in the wild. 6

The AotM data consists of approximately 29K playlists
over 218K unique songs by 48K unique artists, which we
cleaned with a two-step procedure. First, artist names were
resolved to identifiers by the Echo Nest artist search API.
Second, we matched each song’s artist identifier to the MSD
index, and if the artist was found, we matched the title against
all MSD song titles by the artist. A match was accepted if
either title was contained in the other, or the edit distance
was less than half the (AotM) title length. This was found
by informal inspection to yield fewer false matches than a
direct (artist, title) query to the Echo Nest API.

Having resolved songs to MSD identifiers, we then filtered
the playlist set down to bigrams in which both consecutive
songs were contained in MSD. This results in a collection S
of 66250 bigrams over a library X of 26752 unique songs by
5629 unique artists. 7

5.3 Experimental procedure

For each song xi ∈ X , we computed an optimized acoustic
descriptor vi ∈ R222, tag vector wi ∈ {0, 1}7643, and artist
familiarity score F (xi) ∈ [0, 1]. The familiarity score was
used to construct a weighted shuffle Markov chain (Eqn. (4)).
The audio and tag spaces were used to generate kNN Markov

4 http://last.fm
5 http://www.artofthemix.org/
6 One could of course model playlists derived from alternative sources,

but be aware that such playlists may have different characteristics than user-
generated playlists: e.g., terrestrial radio playlists may be constrained by
broadcast regulations or commercial factors.

7 The bigram data and example playlists for each algorithm
can be downloaded from http://www-cse.ucsd.edu/˜bmcfee/
playlists/.

Audio k=16
32
64
128
256
512
1024
2048
4096

Tags k=16
32
64
128
256
512
1024
2048
4096

Uniform
Familiarity
Unweighted
Optimized

−15−14−13−12−11−10−9
Average log−likelihood

−14.72

−14.69

−14.63

−14.55

−14.42

−14.22

−13.92

−13.50

−12.89

−14.04

−13.66

−13.43

−13.33

−13.25

−13.12

−12.92

−12.63

−12.21

−10.19

−10.13

−10.42

 −9.62

Figure 1. Average log-likelihood of test bigrams for each
model under comparison. Scores are averaged across ten
random training/test splits.

chains (Eqn. (5)) for k ∈ {24, 25, . . . , 212}. This results in a
collection of 9 audio-based Markov chains, 9 tag-based, and
one familiarity-based. Including the uniform shuffle model,
we have a total m = 20 simple playlisters.

The playlist set S was randomly partitioned 10 times
into 10%-train, 90%-test sets; each split was performed over
the first element of the bigram so that for each song xi, all
bigrams (xi, ·) belong to either the training or test set. On
average, this yields 6670.9 training and 59597.1 test bigrams.

Each simple playlister was evaluated by computing the
average log-likelihood of test bigrams (x, x′) (Eqn. (1)). All
playlisters were smoothed by Eqn. (6) with µ = 0.01.

We then ran Algorithm 1 on the training set, and evaluated
the resulting playlister on the test set. Our implementation
of Algorithm 1 is written in NumPy, 8 and on average, con-
verges to the global optimum in under 20 seconds on standard
hardware. Since the ensemble includes the uniform model,
no additional smoothing is necessary. Finally, for comparison
purposes, we also compared to the unweighted combination
by fixing each µi = 1/m.

5.4 Results

Figure 1 lists the average log-likelihood of each model un-
der comparison. Although the audio- and tag-based models
tend to generate playlists which are acoustically or seman-
tically consistent, 7 they do not accurately model naturally
occurring playlists. As illustrated in Figure 2, the majority
of bigrams disagree with adjacencies in the kNN graphs, so
kNN methods are outperformed by uniform shuffle. While
the features described here do not suffice to model naturally
occurring playlists, a richer feature set including lyrical or
social information may significantly improve performance,
and will be the subject of future research.

For small values of k, the tag playlister is forced to select

8 http://numpy.scipy.org

0.1% 1% 10%
0

0.1

0.2

0.3

0.4

k / n

B
i
g
r
a
m

%

Audio k−NN
Tag k−NN

Figure 2. Fraction of bigrams (x, x′) ∈ S where x′ is a
k-nearest neighbor of x (as a function of k/n).

Audio Tags Familiarity Uniform
µ 9% 27% 36% 28%

Table 1. Average weight assigned to each model when opti-
mized by Algorithm 1. Audio and Tag weights are aggregated
across all values of k ∈ {24, 25, . . . , 212}.

among songs with highly similar tag vectors. Tag-based
playlisters, therefore, tend to maximize semantic cohesion.
The relatively low performance of the tag playlister indicates
that semantic cohesion does not adequately describe naturally
occurring playlists.

The familiarity model performs slightly better than uni-
form, and significantly better than the audio and tag playlis-
ters. This suggests that popularity and social factors play
significant roles in playlist composition; while not surprising,
this should be taken into account when designing a playlister.

The optimized model produced by Algorithm 2 substan-
tially outperforms all other models, even when only exposed
to an extremely small training set (10%). Note that the un-
weighted combination degrades performance.

To help understand contributions of different components
in the optimized model, we list the average weight assigned
to each model by Algorithm 1 in Table 1, grouped by feature
type. The content-based models receive a significant amount
of weight, suggesting that the models contain some amount
of predictive power. The large weight assigned to the uniform
model may be interpreted as the proportion of information
not modeled by content or familiarity, and thus constitutes
a secondary measure of the (lack of) quality of the other
models in the ensemble.

6. CONCLUSION

We have presented a simple, automatic evaluation procedure
for playlist algorithms. To demonstrate the technique, we
developed a suite of simple baseline playlisters, and evaluated
their performance on naturally occurring playlists.

7. ACKNOWLEDGMENTS

The authors thank Benjamin Fields and Matthew Hoffman
for many helpful conversations, and acknowledge support

from Qualcomm, Inc., Yahoo! Inc., the Hellman Fellowship
Program, and NSF Grants CCF-0830535 and IIS-1054960.

8. REFERENCES
[1] Luke Barrington, Reid Oda, and G.R.G. Lanckriet. Smarter than

genius? Human evaluation of music recommender systems. In
ISMIR, 2009.

[2] A. Berenzweig, B. Logan, D.P.W. Ellis, and B. Whitman.
A large-scale evaluation of acoustic and subjective music-
similarity measures. CMJ, 28(2):63–76, 2004.

[3] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman,
and Paul Lamere. The million song dataset. In ISMIR, 2011.

[4] K. Bosteels, E. Pampalk, and E.E. Kerre. Evaluating and
analysing dynamic playlist generation heuristics using radio
logs and fuzzy set theory. In International Conference on Music
Information Retrieval, 2009.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[6] O. Celma. Music Recommendation and Discovery in the Long
Tail. Springer, 2010.

[7] M. Dopler, M. Schedl, T. Pohle, and P. Knees. Accessing music
collections via representative cluster prototypes in a hierarchical
organization scheme. In ISMIR, 2008.

[8] B. Fields. Contextualize Your Listening: The Playlist as Rec-
ommendation Engine. PhD thesis, Goldsmiths, University of
London, April 2011.

[9] B. Fields, C. Rhodes, and M. d’Inverno. Using song social tags
and topic models to describe and compare playlists. Workshop
on Music Recommendation and Discovery, 2010.

[10] Ben Fields, Christophe Rhodes, Michael Casey, and Kurt Jacob-
sen. Social playlists and bottleneck measurements: Exploiting
musician social graphs using content-based dissimilarity and
pairwise maximum flow values. In ISMIR, 2008.

[11] Tony Jebara, Risi Kondor, and Andrew Howard. Probability
product kernels. JMLR, 5:819–844, Dec 2004.

[12] P. Knees, T. Pohle, M. Schedl, and G. Widmer. Combining
audio-based similarity with web-based data to accelerate auto-
matic music playlist generation. In ACM international work-
shop on multimedia information retrieval, 2006.

[13] B. Logan. Content-based playlist generation: exploratory ex-
periments. In ISMIR, 2002.

[14] B. Logan. Music recommendation from song sets. In ISMIR,
2004.

[15] F. Maillet, D. Eck, G. Desjardins, and P. Lamere. Steerable
playlist generation by learning song similarity from radio sta-
tion playlists. In ISMIR, 2009.

[16] C.D. Manning and H. Schütze. Foundations of Statistical Natu-
ral Language Processing. MIT Press, 1999.

[17] B. McFee, L. Barrington, and G.R.G. Lanckriet. Learn-
ing content similarity for music recommendation, 2011.
http://arxiv.org/1105.2344.

[18] S. Pauws and B. Eggen. PATS: Realization and user evaluation
of an automatic playlist generator. In ISMIR, 2002.

[19] J.C. Platt, C.J.C. Burges, S. Swenson, C. Weare, and A. Zheng.
Learning a gaussian process prior for automatically generating
music playlists. In NIPS. MIT Press, 2002.

[20] M. Slaney and W. White. Measuring playlist diversity for rec-
ommendation systems. In 1st ACM workshop on Audio and
music computing multimedia, AMCMM ’06, pages 77–82, New
York, NY, USA, 2006. ACM.

[21] E. Zheleva, J. Guiver, E. Mendes Rodrigues, and N. Milić-
Frayling. Statistical models of music-listening sessions in social
media. In WWW, 2010.

