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ABSTRACT

Monitoring health and noise pollution in urban environments often
entails deploying acoustic sensor networks to passively collect data
in public spaces. Although spaces are technically public, people in
the environment may not fully realize the degree to which they may
be recorded by the sensor network, which may be perceived as a
violation of expected privacy. Therefore, we propose a method to
anonymize and blur the voices of people recorded in public spaces—
a novel, yet increasingly important task as acoustic sensing becomes
ubiquitous in sensor-equipped smart cities. This method is analo-
gous to Google’s face blurring in its Street View photographs, which
arose from similar concerns in the visual domain. The proposed
blurring method aims to anonymize voices by removing both the lin-
guistic content and personal identity from voices, while preserving
the rest of the acoustic scene.

The method consists of a three-step process. First, voices are
separated from non-voice content by a deep U-Net source separa-
tion model. Second, we evaluate two approaches to obscure the
identity and intelligibility of the extracted voices: a low pass filter
to remove most of the formants in the voices, and an inversion of
Mel-Frequency Cepstral Coefficients (MFCC). Finally, the blurred
vocal content is mixed with the separated non-vocal signal to recon-
struct the acoustic scene. Using background recordings from a real
urban acoustic sensor network in New York City, we present a com-
plete evaluation of our method, with automatic speech recognition,
speaker identification, sound event detection, and human perceptual
evaluation.

Index Terms— voice anonymization, source separation, urban
recordings, privacy

1. INTRODUCTION

Sensor networks are increasingly used to monitor urban environ-
ments and optimize the use of municipal resources and assets. In
this context, large-scale sensing in public spaces is becoming in-
creasingly prevalent. The data captured by these sensors can contain
identifiers or other information that people may expect or prefer to
be kept private. For example, video monitoring may capture an in-
dividual’s face or gait [1], which could be de-anonymized to reveal
their location and activity. In the case of acoustic sensing, if proper
measures are not implemented, this can lead to the recording of con-
versations, with similar implications for privacy. In this work, we ex-
plore new methods for vocal anonymization in urban sound record-
ings, with the goal of obscuring speech content and de-identifying

the speaker, while preserving the remainder of the acoustic scene.
This work is conducted in the context of the Sounds of New York
City (SONYC) [2] project, which is aimed at monitoring, analyzing,
and mitigating urban noise pollution.

Vocal anonymization is a challenging task that requires the seg-
regation and modification of sounds in complex acoustic scenes,
and for which only partial solutions exist. For example, Ribaric et
al. [3] reviewed voice de-identification methods which were limited
to masking the identity of the speaker, but did not directly address
speech content. Qian et al. [4] proposed a method to anonymize both
content and speaker, but it was developed for recordings of clear
voices which do not have backgrounds needing preservation.

Our approach is inspired by the process of face blurring in im-
ages: we separate the original audio signal into voice and back-
ground components, then selectively distort (“blur”) the voice signal
before mixing back with the background. By using source separa-
tion, processing and remixing, our method is the first to achieve the
three objectives of speaker de-identification, content obfuscation and
scene preservation in environmental sound recordings. Our work
further contributes new datasets for the training and testing of our
models, as well as a novel evaluation framework.

2. APPROACH

The proposed anonymization process is depicted in fig. 1. It consists
of a three-step process:

1. We extract the voices from the mix of voice and background
using a deep neural network called U-Net [5, 6], described in
Section 2.1. This step estimates two separated audio signals:
the voice and the residual background.

2. The separated voice is blurred to remove identifiable informa-
tion. We use two different blurring methods in Section 2.2.

3. The blurred voice is recombined with the background signal,
resulting in the anonymized resynthesis.

2.1. U-Net source separation

The U-Net model is a fully convolutional neural network, originally
designed for cell segmentation [5]. Jansson et al. [6] successfully
applied this architecture to spectrogram representations to isolate
singing voice from non-vocal instrumentation.

In our case, the inputX ∈ RT×F
+ is a magnitude spectrogram of

mix, an urban sound recording containing both a background acous-
tic scene we wish to preserve and voices we wish to anonymize.
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Fig. 1: Schematic diagram of the proposed anonymization method.
Note that the spectrogram visualizations are for illustrative purposes
only. Some steps are actually performed in the time-domain. See
section 2 for details.

From X , the U-Net learns a compressed, encoded representation,
which is decoded to reconstruct a target magnitude spectrogram,
which in our case, is derived from an isolated vocal signal provided
as supervision. More precisely, the U-Net with parameters θ com-
putes a continuous (soft) mask fθ : RT×F

+ → [0, 1]T×F , and the
separated magnitude spectrogram is estimated by the element-wise
product of X with the mask: X ⊗ fθ(X). To train the U-Net, we
minimize the mean absolute error between the estimation and the
ideal isolated voice magnitude spectrogram Y ∈ RT×F

+ :

L(X ,Y; θ) = ‖X ⊗ fθ(X)− Y ‖1.

To preserve details lost in the encoding stage, skip connections are
added between corresponding layers of the encoder and decoder sub-
networks. After estimating the vocal magnitude spectrogram, we
combine it with the phase of the input spectrogram to reconstruct,
with an ISTFT, an temporal signal of the separated voice.

2.2. Voice blurring

We present here two blurring methods, intended to conceal both the
identity and content of the separated vocal signal.

2.2.1. Low-pass filtering

Because most of the voice content is localized to the high frequen-
cies, for this first blurring method, we chose to simply low-pass filter
the separated voice at 250 Hz, by sub-sampling the signal at 500 Hz
and up-sampling the results back to 16 kHz. This was done using
the sample-rate conversion utilities provided by librosa [7].

2.2.2. MFCC inversion

To further remove the identity of the speaker, we also propose an-
other method of blurring using approximate MFCC inversion, like in
[8]. MFCCs represent the spectral envelope, or timbre, of an audio
signal [9], and the low-order coefficients have been used in speech
recognition systems because they broadly retain phonetic informa-
tion while discarding much of the speaker’s identifiable characteris-
tics. In this work, we compute the MFCC coefficient and choose to
retain only the first 5 MFCC coefficients for inversion, which are in-
sufficient for speech recognition, but still capture the general spectral
envelope.

Given a time-series of the first 5 MFCCs, we apply the inverse
discrete cosine transform and decibel-scaling, resulting in an ap-
proximate mel power spectrogram. We then use a Non-Negative
Least Squares (NNLS) solver to convert the mel spectrogram into
a linear frequency power spectrogram. Finally, the Griffin-Lim al-
gorithm [10] is used to estimate phase, and the resulting complex
spectrogram is transformed to the time domain using the inverse
short-time Fourier transform. We stress that the reconstruction here
need not be perfect, since the goal is to produce an unintelligible
signal. Griffin-Lim is used here primarily to reduce obvious phasing
artifacts which might otherwise distract from the overall acoustic
scene. This components of this process have been implemented in
librosa 0.7 [7].

3. EVALUATION

This section presents the methods we used to evaluate our
anonymization process. The first experiment (Section 3.2) evaluates
the separation step, and uses standard source separation metrics. The
next three experiments address each of our goals:

1. Content obfuscation, evaluated by a speech recognition ex-
periment (automatic and human);

2. Speaker anonymization, evaluated by a speaker identification
experiment (automatic); and

3. Scene preservation, evaluated by an urban sound tagging ex-
periment (automatic and human).

3.1. Datasets

The U-Net model is trained and evaluated on pairs of mix and cor-
responding separated voice. We constructed our own separated
datasets using SONYC [2] recordings of New York City as the
background, and two sources of foreground voice recordings: Vox-
Celeb [11] celebrity voices recordings and LibriSpeech audio book
speech recordings [12]. VoxCeleb will be used for speaker recogni-
tion, and LibriSpeech for content obfuscation.



3.1.1. SONYC dataset

The SONYC dataset [13] has been released for the Urban Sound
Tagging Challenge for DCASE 2019.1 The SONYC data consist of
10-second recordings, labeled for 8 coarse classes: engine, machin-
ery impact, non-machinery impact, powered saw, alert signal, mu-
sic, human voice and dog. These labels are weak, i.e. there is only
one label for all 10 seconds, and multi label, i.e. one example can
be labeled with one or several classes. It is split into a training set
of 2351 recordings and a validation set of 443 recordings, as only
the development set has currently been released. Using the labels,
we selected the recordings without human voices in them, resulting
in 1500 background recordings for training, and 244 backgrounds
for validation. The training set was used to fit the U-Net separa-
tion model, and validation set is used as test data in our four exper-
iments. We detail the mixing procedure of our synthetic datasets in
section 3.1.4

3.1.2. VoxCeleb dataset

The VoxCeleb dataset contains recordings of celebrity voices curated
from YouTube and was originally designed for speaker recognition
and verification. We chose the VoxCeleb dataset due to its similarity
to real-world conversations and speaker identity annotations. Vox-
Celeb is partitioned into training and test sets, consisting of 1211 and
40 distinct speakers respectively. We used the VoxCeleb dataset for
training and testing the U-Net model. We chose one random voice
from the testing VoxCeleb dataset for each SONYC background of
our test set, resulting in 244 mix test signals.

3.1.3. LibriSpeech dataset

LibriSpeech is a dataset designed for automatic speech recognition
(ASR) [12]. It contains 1000 hours of recordings of people reading
English texts for audio books. Because these recordings are clear
and easy to transcribe, we chose this dataset for evaluating the sys-
tem’s ability to obfuscate speech content. Similarly to the VoxCeleb
dataset, we choose one random voice from the LibriSpeech dataset
for each background signal, resulting in 244 mix test signals.

3.1.4. Mixing voices and backgrounds

To generate training data, we randomly added N ∈ {3, 4, 5} 1 sec-
ond segments of voice from VoxCeleb training set to our SONYC
backgrounds. Both the backgrounds and voices were normalized us-
ing the root mean square (RMS) of the signal.

Test signals were generated in two different conditions: High-
SNR and Low-SNR, intended to simulate scenarios in which the
vocal signal is or is not prominent in the acoustic scene. Sig-
nals were combined using two ranges of mixing coefficient α:
mix = α · voice + (1 − α) · background. In the Low-SNR range
(α ∈ [0.1, 0.4]), we mixed the voices lower than the background to
resemble the current recordings in the SONYC dataset that contain
voice. In the High-SNR range (α ∈ [0.5, 0.7]), we mixed the voices
higher to mimic other urban scenarios (for example crowdsensing
with mobile phones) in which the voice may be more prominent. In
both settings, α is drawn uniformly at random from the given range.
For each experiment, we randomly selected 244 voices from either
VoxCeleb testing set or LibriSpeech as the voices, mixed with the
244 backgrounds of the evaluation set of SONYC dataset, resulting
in evaluation sets of 244 mixes.

1http://dcase.community/challenge2019/index#task5

3.2. Experiment 1: Source separation quality

To evaluate the source separation quality of the model, we use the
traditional metrics of this field — Source-to-Artifact Ratio (SAR),
Source-to-Interference Ratio (SIR) and Source-to-Distortion Ratio
(SDR) [14] — as implemented in the mir eval toolbox [15]. For
a reference point, we also computed the results of the ideal binary
mask (IBM), an oracle method using the ground-truth separated sig-
nals. To compute the IBM, we set the time-frequency mask to 1
whenever the target source is stronger than the acoustic background,
and 0 otherwise. The IBM gives an upper bound for the performance
our two test conditions (Low-SNR and High-SNR). We use an eval-
uation set composed of the evaluation backgrounds of SONYC and
voices from VoxCeleb testing set. While this experiment does not
directly address our anonymization goals, we report on this experi-
ment to inform the analysis of our other experiments and to provide
a reference point to relate our results to other source separation al-
gorithms.

3.3. Experiment 2: Content obfuscation

To demonstrate that our method successfully obfuscates speech con-
tent, we ran an ASR system using the Google API [16] on the out-
put of our processing pipeline: for the mix, separated voice, blurred
voice and resynthesis. We evaluate this using the LibriSpeech set,
which includes text transcriptions of the spoken content. We evalu-
ate the performance using Ratcliff-Obershelf algorithm [17] as im-
plemented in Python’s difflib.SequenceMatcher. This met-
ric measures the similarity between two words. Using this similarity
to the ground truth, we compare the results for the mix, the sep-
arated voice, separated background, blurred voices, and resynthe-
sis. Evaluating on each step of the process, as well as the estimated
background, allows us to quantify how much intelligible speech is
retained by each stage.

Since ASR may not perform well on noisy signals, we also ran
a listening test in which we asked 10 participants to transcribe the
mix and the MFCC-inversion blurred signals. The 10 participants
collectively transcribed 30 source recordings (15 High-SNR and 15
Low-SNR), the mix and resynthesis (MFCC-inversion) of each. To
prevent participants from transcribing both the mix and resynthesis
version of the same source recording, the recordings were split into
two sets, each containing 30 recordings with High/Low-SNR voice,
mix, and resynthesis versions evenly distributed. The set assignment
and presentation order of recordings were both randomized.

3.4. Experiment 3: Speaker anonymization

To measure the ability of the proposed system to obscure speaker
identities, we ran an automatic speaker identification system, trained
on the VoxCeleb dataset. We used the VggVox model [18], which is
a convolutional neural network trained to produce a speaker-oriented
embedding from an input spectrogram. First, we used the model
compute the embeddings of a pool of speakers composed of the
ground-truth voice recordings. Then, to identify the speaker in a test
signal, we simply compute the embedding of the signal and com-
pare it to all of the embeddings of the pool using cosine distance.
The nearest neighbor estimates the speaker of our test signal. We
used this method to identify the speakers in the mixes, the separated
voices, and the different blurring approaches.



(a) ASR with LibriSpeech data, MFCC and Low-Pass blurring. (b) Human transcription with LibriSpeech, MFCC blurring

Fig. 2: Content obfuscation results. Mean inverse sequence similarity to the ground-truth word sequence. Bars are the 95% CIs.

Table 1: Example of transcription with ASR and human transcription. The bolded words are the correctly transcribed portions.

Audio Method Transcription

— Ground truth sort of magic touchstone by which they are saved the labour of investigation but there is no such
thing as a single

Mix ASR sort of Magic touch stone by which they are saved the labour of Investigation but there is
no such thing as a single

Human Sort of magic touchdown by which they are saved the role of their imagination but there is
no such thing as a single

Resynthesis ASR take me to PE15 there’s no such thing as single
Human but there was no such

3.5. Experiment 4: Acoustic scene preservation

Lastly, to evaluate the preservation of the acoustic scene, we ran an
urban sound tagging model trained on the SONYC dataset. This
model was released as a baseline for the Urban Sound Tagging chal-
lenge for DCASE 2019.2 The model uses logistic regression with
VGGish input features [19] to estimate the 8 urban sound classes
of the SONYC dataset. The evaluation set is computed with voices
from the VoxCeleb dataset. We evaluated tagging performance with
the micro-averaged F1 score (with a 0.5 threshold) and the micro-
averaged and macro-averaged area under the precision-recall curve
(AUPRC), [20]. Here we focus the comparison on the tagging per-
formance of the MFCC-inversion blurred voice and the original mix
signals.

The same 10 participants from the earlier task were also asked
to perform multi-label annotation of 30 excerpts of 10 seconds (15
High-SNR, 15 Low-SNR). Two different audio sets were annotated
using the same set of classes as the automatic classifier. The first
set contains the output of our anonymization system (this set will
be called BlurSep in the remaining sections). The other set is the
equivalent ground-truth anonymization. The ground truth voice from
VoxCeleb is blurred by MFCC-inversion and mixed with a back-
ground from SONYC dataset (this set will be called BlurGT).

2https://github.com/sonyc-project/urban-sound-tagging-
baseline/tree/master/urban-sound-tagging-baseline

3.6. Model training

We used the 1500 mixes from the train set of SONYC mixed with
VoxCeleb voices for training as specified in section 3.1.4. Input
spectrograms consist of 128 frames of 16 kHz monophonic audio,
which have been transformed by 1024-point Hann-windowed STFT
with hop size of 256 samples. The U-Net output activations are sig-
moid to limit values between 0 and 1 for the output mask. We used
the ADAM optimizer with default parameters for 5 epochs. The
model architecture follows Janson et. al. [6]. Each layer of encod-
ing is a 2D convolution with 5 by 5 filters and 2 by 2 strides, batch
normalization and leaky ReLU activations. Each layer of the de-
coder is a strided deconvolution layer, with stride 2 and filters 5 by
5, batch normalization and ReLU activations.

4. RESULTS

4.1. Experiment 1: Source separation quality

The results for the source separation step are presented in table 2.
The IBM rows indicates an upper bound for the source separation
problem with our data. As expected, the separation is better in the
High-SNR context. In that data subset, the voice is rarely masked
by the background, making it easier to extract with our deep neural
network. Since we are using the estimated separated voice signal to
also compute the remaining background, the voice separation per-
formance indicates how much of the voice we are blurring and how
much is retained in the estimated background signal. Because of



Table 2: Results of the source separation step, mean and standard
deviation (IBM: ideal binary masks)

Model SDR (std) SIR (std) SAR (std)

U-Net Low-SNR 8.20 (4.91) 13.01 (5.36) 10.98 (4.49)
U-Net High-SNR 12.31 (4.03) 16.91 (4.03) 12.31 (3.13)

IBM Low-SNR 12.39 (4.27) 19.21 (4.27) 13.62 (4.27)
IBM High-SNR 17.98 (3.02) 21.26 (3.31) 16.19 (2.98)

this, we can see that the quality of the separation impacts the quality
of the content anonymization in section 4.2.

4.2. Experiment 2: Content obfuscation

Figure 2 presents the results of the ASR and the human evaluation
experiments for the obscuring speech content. The mix results show
that background noise already affects the ability of the ASR system
to transcribe, and that the effect is larger for the Low-SNR dataset.

Separating the voices from the mix does not improve the results
of the ASR: we see substantial decrease between mix and sep in
both the High-SNR and Low-SNR context. This indicates that the
ASR system is sensitive to the artifacts created by the separation
step. The blur results (blur MFCC bar for MFCC blurring and
blur Low Pass for low pass blurring) in fig. 2a) are the results
of both blurring methods: MFCC and Low Pass. Our two blurring
methods fully obscure the content of the voices, at least from the
perspective of ASR. All of the remaining content we can observe
in the resynthesis data comes from the fact that the separation is
not perfect, and some un-blurred vocal content remains in the resid-
ual background after separation and resynthesis. This effect is even
more noticeable in the case of the Low-SNR data, when the sepa-
ration is less accurate, leaving more vocal signal in the estimated
background. Overall, both blurring methods successfully obscure
speech content, but the efficacy of the entire process is a function of
the quality of the separation.

Because manual text transcription is a long and tedious task,
we limited the human transcription experiments to the mix (input)
and resynthesis (output) signals. MFCC blurring was used for the
resynthesis. Similar to the ASR results, we again find the Low-SNR
dataset more difficult to transcribe than High-SNR. The transcrip-
tion score after resynthesis tracks is substantially lower than on the
original signals, confirming that our blurring method does obscure
the content, even with human listeners. Noise in the mix hampers
the human subjects’ ability to transcribe more than the ASR system
in high SNR conditions. Notably, Low-SNR results are very similar
between humans and the ASR system.

An example of human and automatic transcription is provided
in Table 1, with a High-SNR signal. While the original mix can be
perfectly interpreted by ASR, and mostly interpreted by the human,
the obfuscated signal destroys most of the speech content. Although
a few words are correctly transcribed, the results suggest that the
overall content of the utterance is successfully obscured.

4.3. Experiment 3: Speaker anonymization

The results of the speaker verification experiment are presented in
Table 3, with the percentage of correctly identified speakers from
244 test examples. The Low-SNR dataset remains the hardest to
identify the speaker, even for the unmodified mix. Only 43% of

Table 3: Results of speaker verification, Low-SNR and High-SNR.

Data % correct identification

Low-SNR Mix 43%
Low-pass filter 29 %
MFCC inversion 29 %

High-SNR Mix 83 %
Low-pass filter 43 %
MFCC inversion 43 %

the tracks are correctly assigned to the right speaker for the Low-
SNR dataset. Finally, our blurring method increases the anonymity
of speakers, reducing the percentage of correct identifications from
43% for the mix to 29%% for the MFCC inversion (Low-SNR
dataset), and from 83 to 43% (High-SNR dataset).

4.4. Experiment 4: Acoustic scene preservation

The results of the scene preservation task are presented in Figure 3.
From the results, we can see that the urban sound tagging is a
hard task: what matters most here is the difference in accuracy ob-
tained by the classifier in each test condition (original mix, MFCC-
inversion, and low-pass filtering).

For the mix, the micro-averaged F1 score is 0.46 for the Low-
SNR dataset. For the resynthesis with MFCC blurring signal, the F1
score is 0.44. Since the voice is not masking the background as in the
High-SNR dataset, the classification results are better for the Low-
SNR dataset, for all metrics (Figures 3a to 3c). For the Low-SNR
dataset, our blurring method does not decrease the performance of
the urban sound classification. For the High-SNR dataset, since the
voices are louder, the results decrease between mix and the resynthe-
sis.

Finally, among our two blurring methods, we can see that the
MFCC-inversion method is the one that best preserves the scene.

The results of the human evaluation are in Figure 4. For both
the Low-SNR and High-SNR variants, the performance of the par-
ticipants on the smaller human-based evaluation was higher than the
machine’s performance on the automatic evaluation task. In agree-
ment with the automatic classification results, humans were better at
classifying the Low-SNR dataset compared to the High-SNR, prob-
ably because the mixed vocals did not obscure as much of the overall
acoustic scene.

The BlurGT can be seen as the best classification score we
would achieve given our blurring process. We can see that the re-
sults of the BlurGT and the BlurSep are comparable in term of
F1 score. Therefore, while these scores are below the published F1-
score agreement between novice annotators and ground-truth anno-
tations on this task using the full dataset (0.86) [13], this is likely
due to additional masking caused by the blurring, rather than the
separation performance. But this may also be due to the particu-
lar small subset of SONYC-UST chosen for this experiment. Thus,
human evaluation assesses that our anonymization method does not
completely preserve the acoustic scene, but this is not due to the
separation quality. Therefore, this could possibly be improved with
a different blurring method or by simply mixing the blurred voice at
a lower level to reduce masking.



(a) Micro F1 score (b) Macro AUPRC (c) Micro AUPRC

Fig. 3: Results of the urban sound classification experiments.

Fig. 4: Human evaluation for acoustic scene preservation, with
MFCC blurring

5. CONCLUSION AND FUTURE WORKS.

We presented a new task and a new proof of concept method for pre-
serving individual privacy in urban sound recordings. The evalua-
tions demonstrated that our method successfully anonymized speak-
ers, obscured speech content, and generally preserved the acoustic
background of the scene. The proposed blurring methods were inten-
tionally simple, but show promise. However, more advanced blur-
ring methods could be considered to improve performance, which
will be the subject of future research. The results of the speech
recognition experiments indicate that source separation is a crucial
step in the overall system, and improvements to the separation model
could be readily integrated into the proposed framework.
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