
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 1

Codebook based Audio Feature Representation for
Music Information Retrieval

Yonatan Vaizman, Brian McFee, member, IEEE, and Gert Lanckriet, senior member, IEEE

Abstract—Digital music has become prolific in the web in
recent decades. Automated recommendation systems are essen-
tial for users to discover music they love and for artists to
reach appropriate audience. When manual annotations and user
preference data is lacking (e.g. for new artists) these systems
must rely on content based methods. Besides powerful machine
learning tools for classification and retrieval, a key component for
successful recommendation is the audio content representation.

Good representations should capture informative musical pat-
terns in the audio signal of songs. These representations should
be concise, to enable efficient (low storage, easy indexing, fast
search) management of huge music repositories, and should also
be easy and fast to compute, to enable real-time interaction with
a user supplying new songs to the system.

Before designing new audio features, we explore the usage
of traditional local features, while adding a stage of encoding
with a pre-computed codebook and a stage of pooling to get
compact vectorial representations. We experiment with different
encoding methods, namely the LASSO, vector quantization (VQ)
and cosine similarity (CS). We evaluate the representations’
quality in two music information retrieval applications: query-
by-tag and query-by-example. Our results show that concise
representations can be used for successful performance in both
applications. We recommend using top-τ VQ encoding, which
consistently performs well in both applications, and requires
much less computation time than the LASSO.

Index Terms—Music recommendation, audio content represen-
tations, vector quantization, sparse coding, music information
retrieval.

I. INTRODUCTION

IN the recent decades digital music has become more
accessible and abundant on the web and large scale sys-

tems for recommendation and exploration have become more
popular. Since the availability of manual annotations and user
preference data is limited (e.g. for new, unfamiliar, artists)
industrial recommendation systems must incorporate content
based methods, which interpret the actual audio content of
music items and extract meaningful information from it. In
the past decade much research was dedicated to constructing
content based systems for music information retrieval (MIR)
tasks such as music classification (to artist, genre, etc. [1]–
[13]), semantic annotation (auto-tagging) and retrieval (query-
by-tag [14]–[22]) and music similarity for song-to-song rec-
ommendation ([23]–[29]). The focus was mostly on machine
learning algorithms that utilize basic audio features to perform
the task.

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Y. Vaizman and G. Lanckriet are with the Department of Electrical and
Computer Engineering, University of California, San Diego.

B. McFee is with the Center for Jazz Studies and LabROSA, Columbia
University, New York.

In this work we focus on the audio feature extraction and
representation. We look for efficient methods to represent
whole songs (not single frames, not short clips) in a compact
way that facilitates efficient storage and communication for
large music repositories, and convenient processing for fast
search and recommendation. We examine whether a single
representation can be rich enough to be useful for multiple
MIR applications. Before we develop new low-level audio
features, we try to make the most of traditional features,
based on mel scaled spectra of short time frames. We use
a stage of encoding these frame feature vectors with a pre-
computed codebook, and a stage of pooling the coded frames
(temporal integration) to get a summarized fixed-dimension
representation of a whole song. The encoding detects informa-
tive local patterns and represents the frames at a higher level.
The pooling stage makes the representation of a whole song
compact and easy to work with (low storage, fast computation
and communication), and it creates a representation that has
the same dimension for all songs, regardless of their durations.

A. Related work

Many MIR research works used mel frequency cepstral
coefficients (MFCC) as audio features ([1]–[4], [8], [12],
[14], [16], [17], [19], [23]–[25], [27]–[30]). Other types of
popular low-level audio features, based on short time Fourier
transform are the constant-Q transform (CQT), describing a
short time spectrum with logarithmically scaled frequency bins
([10]–[12], [16], [17]), and chroma features, which summa-
rize energy from all octaves to a single 12-dimensional (per
frame) representation of the chromatic scale ([4], [18], [31]).
While MFCC is considered as capturing timbral qualities of
the sound, the CQT and chroma features are designed for
harmonic properties of the music (or melodic, if using patches
of multiple frames). Hamel et al. suggested using principal
component analysis (PCA) whitening of mel scaled spectral
features as alternative to MFCC [32]. Some works combine
heterogeneous acoustic analysis features, such as zero crossing
rate, spectral flatness, estimated tempo, amplitude modulation
features etc. ([1], [8], [26], [33], [34]).

Low-level audio features are typically extracted from short
time frames of the musical clip and then some temporal
integration is done. Sometimes an early integration is per-
formed, by taking statistics (mean, variance, covariance, etc.)
of the feature vector over longer segments, or over the entire
song (e.g. [7], [16]). Sometimes late integration is performed,
for instance: each short segment is classified and for the
entire musical clip a majority vote is taken over the multiple
segments’ declared labels (e.g. [9]). Such late integration

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2

systems require more computing time, since the classification
operation should be done to every frame, instead of to a single
vector representation per song.

Another approach for temporal integration is getting a com-
pact representation of a song by generative modeling. In this
approach the whole song is described using a parametric struc-
ture that models how the song’s feature vector time series was
generated. Various generative models were used: GMM ([1],
[8], [14], [15], [18], [19], [25], [27], [28], [34], [35]) , DTM
([20]), MAR ([2], [8]), ARM ([36]), HMM ([3], [8], [37]),
HDP ([27]). Although these models have been shown very
useful and some of them are also time-efficient to work with,
the representation of a song using a statistical model is less
convenient than a vectorial representation. The former requires
retrieval systems that fit specifically to the generative model
while the later can be processed by many generic machine
learning tools. Computing similarity between two songs is
not straight forward when using a generative model (although
there are some ways to handle it, like the probability product
kernel ([18], [36], [38])), whereas for vectorial representation
there are many efficient generic ways to compute similarity
between two vectors of the same dimension. In [36] the song
level generative model (multivariate autoregressive mixture)
was actually used to create a kind of vectorial representation
for a song by describing the sampled frequency response of
the generative model’s dynamic system. However, because the
model was a mixture model, the resulted representation was a
bag of four vectors, and not a single vectorial representation.

Encoding of low-level features using a pre-calculated code-
book was examined for audio and music. Quantization tree
([23]), vector quantization (VQ) ([3], [29], [39]), sparse coding
with the LASSO ([5]) and other variations ([10], [11]) were
used to represent the features at a higher level. Sparse repre-
sentations were also applied directly to time domain audio sig-
nals, with either predetermined kernel functions (Gammatone)
or with a trained codebook ([6], [40]). As alternative to the
heavy computational cost of solving optimization criteria (like
the LASSO) greedy algorithms like matching pursuit have also
been applied ([6], [39], [40]).

Heterogeneous and multi-layer systems have been proposed.
The bag of systems approach combined various generative
models as codewords ([22]). Multi-modal signals (audio and
image) were combined in a single framework ([41]). Even the
codebook training scheme, which was usually unsupervised,
was combined with supervision to get a boosted represen-
tation for a specific application ([12], [41]). Deep belief
networks were used in [9], also combining unsupervised
network weights training with supervised fine tuning. In [13]
audio features were processed in two layers of encoding with
codebooks.

Several works invested in comparing different encoding
schemes for audio, music and image. Nam et al. exam-
ined different variations of low-level audio processing, and
compared different encoding methods (VQ, the LASSO and
sparse restricted Boltzmann machine) for music annotation and
retrieval with the CAL500 dataset [21]. Yeh et al. reported
finding superiority of sparsity-enforced dictionary learning and
L1-regularized encoding over regular VQ for genre classifica-

tion. In [42] Coates and Ng examined the usage of different
combinations of dictionary training algorithms and encoding
algorithms to better explain the successful performance of
sparse coding in previous works. They concluded that the
dictionary training stage has less of an impact on the final
performance than the encoding stage and that the main merit
of sparse coding may be due to its nonlinearity, which can
be achieved also with simpler encoders that apply some
nonlinear soft thresholding. In [43] Coates et al. examined
various parameters of early feature extraction for images (such
as the density of the extracted patches) and showed that
when properly extracting features, one can use simple and
efficient algorithms (k-means clustering and single layer neural
network) and achieve image classification performance as high
as other, more complex systems.

B. Our contribution

In this work we look for compact audio content repre-
sentations for full-length songs that will be powerful for
two different MIR applications: query-by-tag and query-by-
example. We perform a large scale evaluation, using the
CAL10k and Last.FM datasets. We assess the effect of various
design choices in the “low-level-feature, encoding, pooling”
scheme, and eventually recommend a representation “recipe”
(based on vector quantization) that is efficient to compute, and
has consistent high performance in both MIR applications.

The remainder of the paper is organized as follows: in
Section II we describe the audio representations that we
compare, including the low-level audio features, the encoding
methods and pooling. In Section III we describe the MIR
tasks that we evaluate: query-by-tag and query-by-example
retrieval. In Section IV we specify the datasets use, the data
processing stages and the experiments performed. In Section V
we describe our results, followed by conclusions in Section VI.

II. SONG REPRESENTATION

We examine the encoding-pooling scheme to get a compact
representation for each song (or musical piece). The scheme
is comprised of three stages:

1) Short time frame features: each song is processed to a
time series of low-level feature vectors, X ∈ Rd×T (T
time frames, with a d dimensional feature vector from
each frame).

2) Encoding: each feature vector xt ∈ Rd is then encoded
to a code vector ct ∈ Rk, using a pre-calculated
dictionary D ∈ Rd×k, a codebook of k “basis vectors”
of dimension d. We get the encoded song C ∈ Rk×T .

3) Pooling: the coded frame vectors are pooled together to
a single compact vector v ∈ Rk.

This approach is also known as the bag of features (BoF)
approach: where features are collected from different patches
of an object (small two-dimensional patches of an image,
short time frames of a song, etc.) to form a variable-size
set of detected features. The pooling stage enables us to
have a unified dimension to the representations of all songs,
regardless of the songs’ durations. A common way to pool
the low-level frame vectors together is to take some statistic

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 3

of them, typically their mean. For a monotonic, short song,
such a statistic may be a good representative of the properties
of the song.

However, a typical song is prone to changes in the spectral
content, and a simple statistic pooling function over the low-
level feature frames might not represent it well. For that reason
the second stage (encoding) was introduced. In a coded vector,
each entry encodes the presence/absence/prominence of a
specific pattern in that frame. The pre-trained codebook holds
codewords (patterns) that are supposed to roughly represent
the variety of prominent patterns in songs (the columns of the
codebook: Dj ∈ Rd, j ∈ {1, 2, . . . , k}). The use of sparsity
in the encoding (having only few basis vectors active/effective
in each frame), promotes selecting codewords that represent
typical whole sound patterns (comprised of possibly many
frequency bands). The pooling of these coded vectors is
meaningful: using mean pooling (v = 1

T

∑T
t=1 ct) results in a

histogram representation, stating the frequency of occurrence
of each sound pattern, while using max-abs (maximum ab-
solute value — v(j) = maxTt=1 |ct(j)|) pooling results in
an indication representation — for each sound pattern, did
it appear anytime in the song, and in what strength. For some
encoding methods it is appropriate to take absolute value and
treat negative values far from zero as strong values. Since
the songs have typically many frames, the resulted pooled
representation doesn’t have to be sparse, even if the frames’
codes were sparse. In our experiments we use three encoding
systems, the LASSO ([44]), vector quantization (VQ), and
cosine similarity (CS) (all explained later), and apply both
mean and max-abs pooling functions to the coded vectors.

A. Low-level audio features

In this work we use spectral features that are commonly as-
sumed to capture timbral qualities. Since we are not interested
in melodic or harmonic information, but rather general sound
similarity, or semantic representation, we assume timbral
features to be appropriate here (an assumption that is worth
examination). Our low-level features are based on mel fre-
quency spectra (MFS), which are calculated by computing the
short time Fourier transform (STFT), summarizing the spread
of energy along mel scaled frequency bins, and compressing
the values with logarithm. Mel frequency cepstral coefficients
(MFCCs [30]) are the result of further processing MFS, using
discrete cosine transform (DCT), in order to both create uncor-
related features from the correlated frequency bins, and reduce
the feature dimension. In addition to the traditional DCT
we alternatively process the MFS with another method for
decorrelating, based on principal component analysis (PCA).
Processing details are specified in Section IV-B.

B. Encoding with the LASSO

The least absolute shrinkage and selection operator (the
LASSO) was suggested as an optimization criterion for linear
regression that selects only few of the regression coefficients
to have effective magnitude, while the rest of the coefficients
are either shrunk or even nullified [44]. The LASSO does that
by balancing between the regression error (squared error) and

an L1 norm penalty over the regression coefficients, which
typically generates sparse coefficients. Usage of the LASSO’s
regression coefficients as a representation of the input is
often referred to as “sparse coding”. In our formulation, the
encoding of a feature vector xt using the LASSO criterion is:

ct = argmin
c∈Rk

1

2
‖ xt −Dc ‖22 +λ ‖ c ‖1.

Intuitively it seems that such a sparse linear combination
might represent separation of the music signal to meaningful
components (e.g. separate instruments). However, this is not
necessarily the case since the LASSO allows coefficients to
be negative and the subtraction of codewords from the linear
combination has little physical interpretability when describing
how musical sounds are generated. To solve the LASSO
optimization problem we use the alternating direction method
of multipliers (ADMM) algorithm. The general algorithm
and a specific version for the LASSO are detailed in [45].
The λ parameter can be interpreted as a sparsity-promoting
parameter: the larger it is, the more weight will be dedicated
to the L1 penalty, and the resulted code will typically have
fewer entries with effective magnitude.

C. Encoding with vector quantization (VQ)

In vector quantization (VQ) a continuous multi-dimensional
vector space is partitioned to a discrete finite set of bins,
each having its own representative vector. The training of a
VQ codebook is essentially a clustering that describes the
distribution of vectors in the space. During encoding, each
frame’s feature vector xt is quantized to the closest codeword
in the codebook, meaning it is encoded as ct, a sparse binary
vector with just a single “on” value, in the index of the
codeword that has smallest distance to it (we use Euclidean
distance). It is also possible to use a softer version of VQ,
selecting for each feature vector xt the τ nearest neighbors
among the k codewords, creating a code vector ct with τ “on”
values and k − τ “off” values:

ct(j) =
1

τ
1 [Dj ∈ τ -nearest neighbors of xt] ,

j ∈ {1, 2, . . . , k}.

Such a soft version can be more stable: whenever a feature
vector has multiple codewords in similar vicinity (quantization
ambiguity), the hard threshold of selecting just one codeword
will result in distorted, noise-sensitive code, while using top-
τ quantization will be more robust. This version also adds
flexibility and richness to the representation: instead of having
k possible codes for every frame, we get

(
k
τ

)
possible codes.

Of course, if τ is too large, we may end up with codes that are
trivial — all the songs will have similar representations and
all the distinguishing information will be lost. The encoding
parameter τ is a density parameter, with larger values causing
denser codes. By adjusting τ we can directly control the level
of sparsity of the code, unlike in the LASSO, where the effect

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 4

of adjusting the parameter λ is indirect, and depends on the
data. The values in the VQ code vectors are binary (either 0 or
1
τ). Using max-abs pooling on these code vectors will result
in binary final representations. Using mean pooling results in
a codeword histogram representation with richer values. We
only use mean pooling for VQ in our experiments.

In [29] it was shown that for codeword histogram represen-
tations (VQ encoding and mean pooling), it was beneficial to
take the square root of every entry, consequently transforming
the song representation vectors from points on a simplex

(
k∑
j=1

|vj | = 1) to points on the positive orthant of a sphere

(
k∑
j=1

|vj |2 = 1). The authors called it PPK transformation,

since a dot product between two transformed vectors is equiv-
alent to the probability product kernel (PPK) with power 0.5
on the original codeword histograms [38]. We also experiment
with the PPK-transformed versions of the codeword histogram
representations.

D. Encoding with cosine similarity (CS)
VQ encoding is simple and fast to compute (unlike the

LASSO, whose solving algorithms, like ADMM, are iterative
and slow). However, it involves a hard threshold (even when
τ > 1) that possibly distorts the data and misses important
information. When VQ is used for communication and recon-
struction of signal it is necessary to use this thresholding in
order to have a low bit rate (transmitting just the index of the
closest codeword).

However, in our case of encoding songs for retrieval we have
other requirements. As an alternative to VQ we experiment
with another form of encoding, where each dictionary code-
word is being used as a linear filter over the feature vectors:
instead of calculating the distance between each feature vector
and each codeword (as done in VQ), we calculate a similarity
between them — the (normalized) dot product between the
feature vector and the codeword: 〈xt,Dj〉

‖xt‖2 . Since the codewords
we train are forced to have unit L2 norm, this is equivalent
to the cosine similarity (CS). The codewords act as pattern
matching filters, where frames with close patterns get higher
response.

For the CS encoding we use the same codebooks that
are used for VQ. For each frame, selecting the closest (by
Euclidean distance) codeword is equivalent to selecting the
codeword with largest CS with the frame. So CS can serve
as a softer version of VQ. The L2 normalization of each
frame (to get CS instead of unnormalized dot product) is
important to avoid having a bias towards frames that have
large magnitudes, and can dominate over all other frames in
the pooling stage. In our preliminary experiments we verified
that this normalization is indeed significantly beneficial to the
performance. The CS regards only to the “shape” of the pattern
but not to its magnitude and gives a fair “vote” also to frames
with low power. Unlike the unnormalized dot product the
response values of CS are limited to the range [−1, 1], and
are easier to interpret and to further process.

In the last stage of the encoding we introduce non-linearity
in the form of the shrinkage function y(x) = sign(x) ∗

max(|x|−θ, 0) (values with magnitude less than θ are nullified
and larger magnitude values remain with linear, but shrinked,
response). Using θ = 0 maintains the linear responses of
the filters, while θ > 0 introduces sparsity, leaving only the
stronger responses. Such a nonlinear function is sometimes
called “soft thresholding” and was used in various works
before to compete with the successful “sparse coding” (the
LASSO) in a fast feed-forward way ([42]).

E. Dictionary training

The training of the dictionaries (codebooks) is performed
with the online learning algorithm for sparse coding presented
by Mairal et al. ([46]). For sparse coding methods like the
LASSO, the problem of finding the optimal dictionary code-
words and code coefficients is a smooth but jointly non-convex
problem. The online algorithm is an iterative procedure that
alternates between encoding a small batch of new instances
using the current dictionary, and updating the dictionary using
the newly encoded instances. This algorithm converges to a
stationary point and scales well to large training sets. As an
initialization stage we apply online k-means to a stream of
training d-dimensional feature vectors, to cluster them to an
initial codebook of k codewords. This initial dictionary is then
given to the online algorithm. In each iteration the updated
codewords are normalized to have unit L2 norm.

III. MIR TASKS

We examine the usage of the various song representations
for two basic MIR applications, with the hope to find stable
representations that are consistently successful in both tasks.
We use simple, linear machine learning methods, seeing as
our goal here is finding useful song representations, rather
than finding sophisticated new learning algorithms. In both
applications the goal of the system is to retrieve songs from
the repository and rank them in order of relevance to the query.
In query-by-tag (or “semantic retrieval”) the query is a tag
word (describing genre, instrument, emotional content etc.),
ultimately allowing for free-text search. In query-by-example
(or “song-song recommendation”) the query is a song by itself,
enabling an online radio or other interfaces. Efficient content
analysis methods could allow for a real-time query-by-example
interface, where the user may upload an unfamiliar song to the
system, and get similar/relevant songs in return.

A. Query-by-tag (QbT)

We use L2-regularized logistic regression as a tag model.
For each semantic tag we use the positively and negatively
labeled training instances (k-dimensional song vectors) to train
a tag model. Then for each song in the test set and for each
tag we use the trained tag model to estimate the probability
of the tag being relevant to the song (the posterior probability
of “positive” for the song-vector given the tag model). For
each song, the vector of tag-probabilities is then normalized
to be a categorical probability over the tags, also known as the
semantic multinomial (SMN) representation of a song [20].

Retrieval: For each tag the songs in the test set are ranked
according to their SMN value relevant to the tag. Per-tag scores

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 5

are calculated as done in [15], [20]: area under curve (AUC) is
the area under the ROC curve (the curve of tradeoff between
false positive rate and true positive rate, where each point
is achieved by a different cutoff threshold over the ranking),
precision at top-10 (P@10) is the fraction of ground truth
positive items out of the top 10 ranked items and average
precision (AP) is the precision averaged over all the positions
in the ranking where a ground truth positive item is found.
These per-tag scores are averages over the tags to get a general
score (mean (over tags) AP is abbreviated MAP).

B. Query-by-example (QbE)

Given a query song, whose audio content is represented as
vector q ∈ Rk, our query-by-example system calculates its
distance dist(q, r) from each repository song r ∈ Rk and the
recommendation retrieval result is the repository songs ranked
in increasing order of distance from the query song. The Eu-
clidean distance is a possible simple distance measure between
songs’ representations. However, it grants equal weight to each
of the vectors’ dimensions, and it is possible that there are
dimensions that carry most of the relevant information, while
other dimensions carry just noise. For that reason, we use a
more general metric as a distance measure, the Mahalanobis

distance: dist(q, r) =

√
(q − r)TW (q − r), when W ∈ Rk×k

is the parameter matrix for the metric (W has to be a positive
semidefinite matrix for a valid metric).

In [47] McFee et al. presented a framework for using a
metric for query-by-example recommendation systems, and a
learning algorithm — metric learning to rank (MLR) — for
training the metric parameter matrix W to optimize various
ranking performance measures. In [29] the authors further
demonstrated the usage of MLR for music recommendation,
and the usage of collaborative filtering data to train the metric,
and to test the ranking quality. Here we follow the same
scheme: collaborative filtering data are used to define artist-
artist similarity (or relevance), and song-song binary relevance
labels. MLR is then applied to training data to learn a metric
W . The learnt metric is tested on a test set. Further details are
provided in Section IV-B. Same as for query-by-tag, we apply
the same scheme to different audio content representations and
compare the performance of query-by-example.

IV. EXPERIMENTAL SETUP

A. Data

In this work we use the CAL10k dataset [48]. This dataset
contains 10, 865 full-length songs from over 4, 500 different
artists, ranging over 18 musical genres. Throughout the paper
we use the convenient term “song” to refer to a music
item/piece (even though many of the items in CAL10k are
pieces of classical music and would commonly not be called
songs). It also contains semantic tags harvested from the
Pandora website1, including 475 acoustic tags and 153 genre
(and sub-genre) tags. These tag annotations were assigned to
the songs by human listeners, musical experts. The songs in
CAL10k are weakly labeled in the sense that if a song doesn’t

1http://www.pandora.com/mgp.shtml

have a certain tag, it doesn’t necessarily mean that the tag is
not relevant for the song, but for evaluation we assume that
missing song-tag associations can be treated as negative labels.
We filter the tags to include only the 581 tags that have at least
30 songs associated with them.

For the query-by-example task we work with the intersec-
tion of artists from CAL10k and the Last.FM2 collaborative
filtering data, collected by Celma ([49] chapter 3). As done
in [29] we calculate the artist-artist similarity based on Jaccard
index ([50]) and the binary song-song relevance metric, which
is used as the target metric to be emulated by MLR.

For the dictionary training we use external data — 3560
audio files of songs/clips by ∼ 700 artists that do not appear
in CAL10k. These clips were harvested from various interfaces
on the web and include both popular and classical music.
This is unlike the sampling from within the experimental
set, as was done in [21], which might cause over-fitting.
The annotation files for the experimental 5-fold partition and
the list of dictionary training songs are available on the
author’s website: http://acsweb.ucsd.edu/∼yvaizman/metadata/
cal10k ground truth.html.

B. Processing

Audio files are averaged to single channel (in case they
are given in stereo) and re-sampled at 22, 050Hz. Feature
extraction is done over half-overlapping short frames of 2, 048
samples (a feature vector once every 1, 024 samples, which is
once every ∼ 46msec). The power spectrum (squared magni-
tude of DFT) of each frame is summarized into 34 Mel-scaled
frequency bins, and log value is saved to produce initial MFS
features. To get the MFCC features a further step of discrete
cosine transform (DCT) is done and 13 coefficients are saved.
The 1st and 2nd instantaneous derivatives are augmented to
produce MFCC∆ (d = 39) and MFS∆ (d = 102) feature
vectors. The next step is to standardize the features so that
each dimension would have zero mean and unit variance
(according to estimated statistics). In order to have comparable
audio features, we reduce the dimension of the MFS∆ to 39
dimensions using a PCA projection matrix (pre-estimated from
the dictionary training data) to get MFS∆PC features.

In both low-level feature versions (MFCC∆ and MFS∆PC)
we use linear transformations (DCT and PCA) to compress
the energy, with two distinctions: First, in the DCT the
projection vectors are predetermined (cosine functions with
various periods) whereas in the PCA the projection vectors
are learnt from examples of music, and therefore assumed
to fit better to music data. Second, for the MFS∆PC we
apply the decorrelating projection (PCA) after augmenting the
instantaneous derivatives, in order to capture the correlations
among consecutive frames.

The dictionary training set is used to both estimate statis-
tics over the raw features (mean and standard deviations of
MFCC∆ and MFS∆ and PCA matrix for the standardized
MFS∆), and to train the dictionary. From each training audio
file a segment of 20 sec is randomly selected, processed and
its feature vectors are added to a pool of vectors (resulting in

2http://www.last.fm/

http://acsweb.ucsd.edu/~yvaizman/metadata/cal10k_ground_truth.html
http://acsweb.ucsd.edu/~yvaizman/metadata/cal10k_ground_truth.html

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 6

1.5 million vectors), which are scrambled to a random order
and fed to the online dictionary training algorithm.

Since the online dictionary learning algorithm involves an
encoding stage in each iteration, an encoding parameter should
be selected for the dictionary training. For each codebook size
k the LASSO codebook is trained with λ = 1 (this codebook
is later used for the LASSO encoding with various values of
λ) and the VQ codebook is trained with τ = 1 (this codebook
is later used for VQ encoding with various values of τ and
for CS encoding with various values of θ).

For training the logistic regression model of a tag, an
internal cross validation is done over different combinations
of parameters (weight of regularization, weight of negative
example, weight of positive example), each of which could
take values of [0.1, 1, 10, 100]. This cross validation is done
using only the training set, and the parameter set selected is the
one that optimizes the AUC. After selecting the best parameter
set for a tag, the entire training set is used to train the tag
model with these parameters.

The query-by-tag evaluation is done with 5-fold cross
validation. For each fold no artist appears in both the train
set (songs by 4

5 of the artists) and the test set (songs by the
remaining 1

5 of the artists). The performance scores that were
averaged over tags in each fold are then averaged over the
five folds. The query-by-example evaluation is done with 10
splits of the data in the same manner as done in [29]. We use
the AUC rank measure to define the MLR loss between two
rankings (marked as ∆(y∗, y) in [47]). For each split we train
W over the train set with multiple values of the slack trade
off parameter C (10−2, 10−1, . . . , 108) and for each value test
the trained metric on the validation set. The metric that results
in highest AUC measure on the validation set is then chosen
and tested on the test set. We report the AUC results on the
test set, averaged over the 10 splits.

For QbE PCA decorrelation and dimensionality reduction
is performed on the data: in each split the PCA matrix
is estimated from the train set and the song representation
vectors (of train, validation and test set) are projected to a
predetermined lower dimension (so the trained matrices W
are in fact not (k × k) but smaller). In [29] the heuristic was
to reduce to the estimated effective dimensionality — meaning
to project to the first PCs covering 0.95 of the covariance (as
estimated from the train set). However, in our experiments we
noticed that reducing to the effective dimensionality caused
deterioration of performance when the effective dimensionality
decreased, while keeping a fixed reduction-dimension kept
stable or improving performance. So keeping 0.95 of the
covariance is not the best practice. Instead, for every k we
fix the dimension of reduction (across different encoders and
encoding parameters).

When testing each of the 10 splits, each song in the query
set (either the validation set or the test set) is used as a query
to retrieve relevant songs from the train set — the train songs
are ranked according to the trained metric and the ranking for
the query song is evaluated (AUC score). The average over
query songs is then taken.

C. Experiments

Each experiment regards to a different type of audio-content
representation. We experiment with different combinations of
the following parameters:
• low-level features: MFCC∆ or MFS∆PC,
• codebook size k ∈ {128, 256, 512, 1024},
• encoding method: the LASSO, VQ or CS,
• encoding parameters:

– the LASSO: λ ∈ {0.01, 0.1, 0.5, 1, 2, 10, 100},
– VQ: τ ∈ {1, 2, 4, 8, 16, 32},
– CS: θ ∈ {0, 0.1, 0.2 . . . , 0.9},

• pooling function: either mean or max-abs,
• PPK-transformation: with or without.

V. RESULTS

First, for comparison, we present query-by-tag baseline
results: chance level scores are calculated here by using the
representations with MFS∆PC, k = 1024 and VQ encoding
with τ = 8 (one of the best performing settings), scrambling
the order of songs and performing the query-by-tag exper-
iment. Then, to control for the necessity of the encoding
stage in our scheme, we perform the experiments without
the encoding (instead of encoding the feature vectors with
a codebook, leaving them as low-level features and pooling
them) for both the MFCC∆ and MFS∆PC low-level features.
Finally, as an alternative to the codebook based systems, we
evaluate the HEM-GMM system ([15], [20]), which is the
suitable candidate from the generative models framework,
being computationally efficient and assuming independent
time frames (like our current codebook systems). We process
the data as was done in [20] for HEM-GMM, using our current
5-fold partition. Table I presents these baselines.

P@10 MAP AUC
chance level 0.02 0.02 0.5

no encoding

audio feature pooling
MFCC∆ mean 0.09 0.07 0.76
MFCC∆ max-abs 0.09 0.07 0.75
MFS∆PC mean 0.10 0.08 0.77
MFS∆PC max-abs 0.09 0.07 0.75

HEM-GMM 0.21 0.16 0.84

TABLE I: Query-by-tag — baseline results

For query-by-tag we show plots (figs. 1 and 2) of the
P@10 rank measure (this measure is the more practical
objective, since in real recommendation systems, the user
typically only looks at the top of the ranked results). Graphical
results for the other performance measures are provided in the
supplementary material. Figure 2 and fig. 3 show the query-
by-tag and query-by-example (respectively) performance of
each encoder separately as a function of codebook size k
(different subplots) and of the encoding parameter (x-axis).
For query-by-example the PCA dimension chosen for each k
is written in parenthesis in the title of each subplot. We also
experimented with higher PCA dimensions and got similar
results (the performance values were slightly higher, but the
comparison among encoders or encoding parameters was the
same. See supplementary material). In some plots error bars

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 7

0.11 0.25
MFCC∆

0.11

0.25

M
FS

∆
P
C

k=128

0.11 0.25
MFCC∆

k=256

0.11 0.25
MFCC∆

k=512

0.11 0.25
MFCC∆

k=1024

VQ

LASSO-mean

LASSO-max-abs
MSF∆PC

HEM-GMM

Fig. 1: Comparison of the two low-level audio features. Each
point regards to a specific combination of encoder, encoding
parameter and pooling, and displays the performance score
(QbT P@10) when using MFCC∆ (x-axis) and MFS∆PC (y-
axis) as low-level features.

are added: the error bars represent the standard deviation of
the score (over the five folds for query-by-tag, and over the
10 splits for query-by-example).

Low-level features: Figure 1 shows the query-by-tag results
for comparison between the two low-level features: MFCC∆
and MFS∆PC. Each point in the graphs compares the per-
formance (P@10) using MFCC∆ (x-axis) to the performance
using MFS∆PC (y-axis), when all the other parameters (k,
encoding method, encoding parameter, pooling method) are
the same. Multiple points with the same shape represent
experiments with the same encoder and pooling, but different
encoding parameter. The main diagonal line (y = x) is added
to emphasize the fact that in the majority of the experiments
performance with MFS∆PC was better than MFCC∆. Statisti-
cal tests (paired two-tailed t-test between two arrays of ∼ 2900
per-fold-per-tag scores) support the advantage of MFS∆PC:
most comparisons show statistically significant advantage of
MFS∆PC (all except six points on the plots. P-value well
below 0.05), and only one point (for k = 128 with VQ and
τ = 32) has significant advantage of MFCC∆.

While it is expected that the data-driven decorrelation (PCA)
performs better than the predetermined projection (DCT), it is
interesting to see that the difference is not so dramatic (the
points are close to the main diagonal) — MFCC manages
to achieve performance close to the data-trained method.
Other than the advantage of training on music data, another
explanation to the higher performance of MFS∆PC can be the
effect of first taking a local dynamic structure (concatenating
the “deltas” to the features) and only then decorrelating the
features-∆ version (as we did here for MFS∆PC).

These results also demonstrate the advantage of using some
encoding over low-level features before pooling them: all these
performances (for both MFCC∆ and MFS∆PC) are better
than the baseline results with no encoding (Table I. The highest
of the “no encoding” baselines is also added as reference
line in the plots). We can also notice the improvement with
increasing codebook sizes (the different subplots). Similar
results are seen for the other performance measures (AUC,

0.1 1 10
λ

0.10

0.17

0.23

Q
b
T
 P

@
1
0

k=128

0.1 1 10
λ

k=256

0.1 1 10
λ

k=512

0.1 1 10
λ

k=1024

mean

max-abs
MSF∆PC

HEM-GMM

(a) Query-by-tag with the LASSO.

1 2 4 8 1632
τ

0.10

0.17

0.23

Q
b
T
 P

@
1
0

k=128

1 2 4 8 1632
τ

k=256

1 2 4 8 1632
τ

k=512

1 2 4 8 1632
τ

k=1024

VQ

VQ-PPK
MSF∆PC

HEM-GMM

(b) Query-by-tag with VQ.

0.2 0.5 0.8
θ

0.10

0.17

0.23

Q
b
T
 P

@
1
0

k=128

0.2 0.5 0.8
θ

k=256

0.2 0.5 0.8
θ

k=512

0.2 0.5 0.8
θ

k=1024

mean

max-abs
MSF∆PC

HEM-GMM

(c) Query-by-tag with CS.

Fig. 2: Query-by-tag with different encoders. Effect of pooling
or PPK-transformation (shape) and encoding parameter (x-
axis): λ (log-scale) for the LASSO (a), τ (log-scale) for VQ
(b) and θ for CS (c). Error bars indicate one standard deviation
over the five folds.

MAP) — graphs shown in the supplementary material. The
remainder of the results focuses on the MFS∆PC low-level
features.

The LASSO encoding: Figures 2a and 3a show the QbT
(P@10) and QbE (AUC) performance for the LASSO encod-
ing. The LASSO is sensitive to the value of its parameter
λ, and for this particular setting, the sweet spot seems to be
around λ ∈ [0.1, 2]. When λ is too high (λ = 10, 100), the
approximation error becomes too high and the resulted code
loses important information, causing deteriorated performance.
When λ is too small (0.01) the balance is also harmed
and performance is deteriorated. Similar results are seen for

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 8

0.1 1 10
λ

0.61

0.72

0.84

Q
b
E
 A

U
C

k=128
(50)

0.1 1 10
λ

k=256
(100)

0.1 1 10
λ

k=512
(200)

0.1 1 10
λ

k=1024
(300)

mean

max-abs

(a) QbE with the LASSO

1 2 4 8 1632
τ

0.61

0.72

0.84

Q
b
E
 A

U
C

k=128
(50)

1 2 4 8 1632
τ

k=256
(100)

1 2 4 8 1632
τ

k=512
(200)

1 2 4 8 1632
τ

k=1024
(300)

VQ

VQ-PPK

(b) QbE with VQ

0.2 0.5 0.8
θ

0.61

0.72

0.84

Q
b
E
 A

U
C

k=128
(50)

0.2 0.5 0.8
θ

k=256
(100)

0.2 0.5 0.8
θ

k=512
(200)

0.2 0.5 0.8
θ

k=1024
(300)

mean

max-abs

(c) QbE with CS

Fig. 3: Query-by-example with different encoders. Effect of
pooling or PPK-transformation (shape) and encoding parame-
ter (x-axis): λ (log-scale) for the LASSO (a), τ (log-scale) for
VQ (b) and θ for CS (c). Error bars indicate one standard
deviation over the 10 splits. For each subplot the number
beneath the codebook size k is the reduced dimension used
for QbE.

AUC and MAP measures (supplementary material). There is
inconsistency regarding a preferred pooling function: max-abs
sometimes has clear advantage over mean pooling (e.g. QbT
with k ≥ 256) and sometimes has disadvantage (e.g. QbE with
k ≤ 256), and AUC and P@10 are also inconsistent in that
matter. The effect of λ on how “thin” the code vectors are is
not direct and can change from song to song (examples are
provided in supplementary material).

VQ encoding: Figures 2b and 3b show the QbT and
QbE performance for VQ encoding. These results depict a
clear effect of the VQ density parameter τ : “softening” the
VQ by quantizing each frame to more than one codeword
significantly improves the performance (more dramatically for
QbT). There is an optimal peak for τ , typically at 8 or 16

— increasing τ further causes performance to deteriorate,
especially with a small codebook. Since VQ encoding requires
low computational load (compared to the LASSO), we also
evaluate QbT experiments with larger sizes of codebook
k ∈ {2048, 4096} and an adjusted range of density parameter
τ ∈ {4, 8, 16, 32, 64, 128, 256}. QbT performance continues
to increase with k. Although these large codebooks provide
potential for much richer codes, the peak is still found at
τ = 16 and not higher. For k = 2048, τ = 16 P@10 is 0.248
and for k = 4096, τ = 16 P@10 is 0.251, both exceeding the
performance achieved with the LASSO and k ≤ 1024. Full
results are presented graphically in the supplementary material.

Cosine similarity encoding: The QbT and QbE results for
CS encoding (Figures 2c and 3c) demonstrate the effect of
adjusting the sparsity parameter θ (the “knee” of the shrinkage
function): the optimal value is not too small and not too large.
This is more dramatically seen for QbT with mean pooling:
there is a significant advantage in adding some non-linearity
(having θ > 0), and at the other end having the code too
sparse (θ too large) causes a drastic reduction in performance.
Same as for the LASSO, there is inconsistency regarding a
preferred pooling function (mean better for QbT, max-abs
better for QbE). The effect of θ on the sparsity of the frames’
code is monotonous but not linear and can change from song
to song (examples are provided in supplementary material).
QbT experiments with larger codebooks (k ∈ {2048, 4096})
show improvement in the AUC and MAP measures (mostly for
using the max-abs pooling), but P@10 remains the same as for
smaller codebooks (see supplementary material for details).

PPK transformation: For the three encoding methods
applying PPK transformation to the vectorial representations
has no effect on QbT performance (for the LASSO and CS
experiments with k = 1024 confirm this). This might be a
result of the specific logistic regression system we use here
for QbT. On QbE performance PPK has little effect for the
LASSO and some improvement for CS with mean pooling
(see supplementary material). PPK causes a significant, large
improvement of QbE for the VQ representations (clearly seen
in fig. 3b). Our QbE results for VQ partly replicate the trends
found by McFee et al. in [29], with a main distinction: since
in [29] the representations were reduced to the estimated
effective dimensionality, which was a decreasing function of
τ , there was a different effect of τ than what we find here
(where we fix the reduced dimension for a given k). In [29],
for k = 512, 1024 with PPK, increasing τ seemed to hurt
the performance, whereas here we show that when PCA is
done to a fixed dimension, increasing τ can maintain a stable
performance, and even slightly improve the performance (for
both with/without PPK), peaking at around τ = 8.

Performance summary: Table II presents the three QbT
measures for selected representations, and the generative
model alternative (HEM-GMM) as baseline. For each measure,
the leading system is marked in bold, and the other systems
are compared to it by 2-tailed paired t-test between the two
arrays of per-fold-per-tag scores (N = 2905). The p-values
of the t-tests are written in parenthesis. Figure 4 shows the
performance of the same representations in both query-by-tag
and query-by-example. The best parameter values from each

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 9

representation QbT
k encoding parameter pooling P@10 MAP AUC
1024 VQ (with PPK) τ = 8 mean 0.230 (9e − 08) 0.185 (1e − 09) 0.867 (9e − 06)

1024 VQ (no PPK) τ = 8 mean 0.235 (1e − 04) 0.188 (4e − 06) 0.868 (2e − 04)

1024 the LASSO λ = 0.1 max-abs 0.246 0.195 0.874
1024 cosine similarity θ = 0.4 mean 0.212 (8e − 27) 0.175 (1e − 34) 0.863 (2e − 19)

1024 cosine similarity θ = 0.8 max-abs 0.190 (9e − 62) 0.156 (2e − 106) 0.852 (2e − 82)

512 VQ (with PPK) τ = 8 mean 0.226 (6e − 11) 0.181 (2e − 17) 0.867 (3e − 07)

512 the LASSO λ = 0.1 max-abs 0.225 (2e − 13) 0.176 (6e − 39) 0.862 (3e − 46)

256 VQ (with PPK) τ = 8 mean 0.218 (4e − 19) 0.176 (5e − 31) 0.863 (2e − 14)

256 the LASSO λ = 0.1 max-abs 0.199 (1e − 53) 0.153 (2e − 129) 0.840 (7e − 230)

128 VQ (with PPK) τ = 8 mean 0.207 (8e − 36) 0.165 (3e − 65) 0.857 (2e − 32)

128 the LASSO λ = 0.1 max-abs 0.160 (6e − 142) 0.122 (9e − 261) 0.811 (0e + 00)

HEM-GMM 0.210 (3e − 30) 0.160 (1e − 78) 0.838 (3e − 107)

TABLE II: QbT results for selected experiments. The bottom line has results from the HEM-GMM system. Numbers in brackets
are p-values of t-test comparing to the leading representation in the measure, whose score is marked in bold.

0.66 0.83
QbE AUC

0.15

0.20

0.24

Q
b
T
 P

@
1
0

k=128
(50)

0.66 0.83
QbE AUC

k=256
(100)

0.66 0.83
QbE AUC

k=512
(200)

0.66 0.83
QbE AUC

k=1024
(300)

VQ

VQ-PPK

LASSO-mean

LASSO-max-abs

CS-mean

CS-max-abs

Fig. 4: Comparing both MIR tasks: Each point represents
a different audio-representation (encoder, parameter, pooling,
PPK) and describes its performance in query-by-tag (y-axis)
and query-by-example (x-axis). From each encoder-pooling
combination the two best performing parameter values are
displayed (with same shape). For each subplot the number
beneath the codebook size k is the reduced dimension used
for QbE.

encoder are presented.
The best QbT performance (for k ≤ 1024) is registered

for the LASSO with k = 1024, where VQ is slightly
behind. However, this shouldn’t be interpreted as an ultimate
advantage of the LASSO, since it is not consistent with other
codebook sizes and with QbE. Both CS and the LASSO are
sensitive to the selection of their encoding parameter: selecting
an inappropriate value results in poor performance of the
representation. In practical systems such methods require cross
validation to select the appropriate parameter value. VQ, on
the other hand, is less sensitive to its density parameter τ .
This is perhaps due to the fact that τ directly controls the
level of sparsity in the VQ code, whereas for CS and the
LASSO the level of sparsity is regularized indirectly. VQ is a
stable representation method that can be easily controlled and
adjusted with little risk of harming its informative power. VQ
consistently achieves high QbT performance and highest QbE

128 256 512 1024
k

0

1

2

3

4

5

6

7

ru
n
ti

m
e
 (

se
c)

CS and VQ

128 256 512 1024
k

0

10

20

30

40

50

60

70

ru
n
ti

m
e
 (

se
c)

CS, VQ and LASSO

CS

VQ

LASSO

Fig. 5: Empirical runtime test. Average runtime for encoding
a song as a function of k (log-scale), and standard deviation
in error-bars. The left plot is a “zoom in” on CS and VQ only.
Notice the right plot (containing also the LASSO) has a wider
range for y-axis. Multiple points of the same shape represent
encodings with different encoding parameter value.

performance (this is also consistent when reducing to a higher
PCA dimension. See supplementary material).

Examples of ranked songs results for selected tags are pre-
sented in supplementary material. These examples demonstrate
how a good system (with top-16 VQ) manages to produce non
trivial song rankings, and place relevant songs at the top, even
when they are lacking ground truth annotation.

Encoding runtime
Since we are searching for practical representations for large

scale systems, we should also consider computation resources
when selecting a preferred representation method. We compare
the runtime complexity of the three encoding methods, from
feature vector xt ∈ Rd to code vector ct ∈ Rk:
• CS involves multiplying xt by matrix D (O(dk)), com-

puting ‖xt‖2 (O(d)) and applying shrinkage to the co-
sine similarities (O(k)), resulting in total complexity of
TCS = O(dk).

• VQ involves the same matrix-vector multiplication and
norm calculation to compute the Euclidean distances.
Then O(cτ,kk) is required to find the τ closest codewords
(cτ,k is a small number that depends logarithmically on
either τ or k, depending on the algorithm used), resulting
in total of TVQ = O((d+ cτ,k)k).

• The ADMM solution for the LASSO is an iterative

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 10

procedure. Each iterations includes a multiplication of
a (k × k) matrix by a k dimensional vector (O(k2)), a
shrinkage function (O(k)) and vector additions (O(k)),
resulting in complexity of O(k2) per iteration. On top
of that, there is O(dk) for once multiplying the dic-
tionary matrix by the feature vector, and there are Mε

iterations, until the procedure converges to ε-tolerance,
so the complexity for the LASSO encoding becomes
TLASSO = O(Mεk

2 + dk).
CS is the lightest encoding method and VQ adds a bit more
computation. Recently linear convergence rate was shown
for solving the LASSO with ADMM [51], implying that
Mε = O(log 1

ε), but even with fast convergence ADMM is
still heavier than VQ. This theoretical analysis is verified in
empirical runtime measurements, presented in Figure 5. We
average over the same 50 songs, and use the same computer
(PC laptop) with single CPU core. The runtime tests fit a linear
dependency on k for CS and for VQ (with slope depending
on τ) and a super-linear dependency on k for the LASSO.

Using the LASSO has an expensive runtime price. With
small computational effort one can use VQ with a larger
codebook (e.g. k = 2048) and get better performance in both
MIR tasks.

VI. CONCLUSION

We show an advantage to using PCA decorrelation of
MFS∆ features over MFCC. The difference is statistically
significant, but small, showing that also the data-agnostic DCT
manages to compress music data well. Increasing the codebook
size results in improved performance for all the encoding
methods. The LASSO and CS are inconsistent with regard
to the preferred pooling method (mean or max-abs). For all
the encoding methods the performance deteriorates when the
encoding parameter has too high or too low values. While
the LASSO and CS can suffer sharp decrease in performance
when adjusting their parameters, VQ is more robust, having
smooth and controlled change in performance when adjusting
its density parameter τ .

We find that a simple, efficient encoding method (VQ) can
successfully compete with the more sophisticated method (the
LASSO), achieving better performance, with much less com-
puting resources. Using top-τ VQ with PPK transformation
consistently achieves high performance (almost always beating
other methods) in both query-by-tag and query-by-example. It
is fast and easy to compute, and it is easily adjustable with
its parameter τ . We recommend this representation method
as a recipe to be applied to other low-level features, to
represent various aspects of musical audio. The resulting
representations are concise, easy to work with and powerful
for music recommendation in large repositories.

REFERENCES

[1] G. Tzanetakis and P. Cook, “Musical genre classification of audio
signals,” IEEE Transactions on speech and audio processing, vol. 10,
no. 5, pp. 293–302, 2002.

[2] A. Meng and J. Shawe-Taylor, “An investigation of feature models
for music genre classification using the support vector classifier,” in
Proc. International Society for Music Information Retrieval conference
(ISMIR), 2005, pp. 604–609.

[3] J. Reed and C. Lee, “A study on music genre classification based on
universal acoustic models,” in Proc. International Society for Music
Information Retrieval conference (ISMIR), 2006, pp. 89–94.

[4] D. P. Ellis, “Classifying music audio with timbral and chroma features,”
in ISMIR 2007: Proceedings of the 8th International Conference on
Music Information Retrieval: September 23-27, 2007, Vienna, Austria.
Austrian Computer Society, 2007, pp. 339–340.

[5] R. Grosse, R. Raina, H. Kwong, and Y. Ng, A., “Shift-invariant sparse
coding for audio classification.” Conference on Uncertainty in AI, 2007.

[6] A. Manzagol, P., T. Bertin-Mahieux, and D. Eck, “on the use of sparse
time-relative auditory codes for music.” International Society for Music
Information Retrieval conference (ISMIR), 2008.

[7] M. Mandel and D. Ellis, “Multiple-instance learning for music infor-
mation retrieval,” in Proc. International Society for Music Information
Retrieval conference (ISMIR), 2008, pp. 577–582.

[8] C. J. S. Essid and G. Richard, “Temporal integration for audio clas-
sification with application to musical instrument classification,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 17, no. 1,
pp. 174–186, 2009.

[9] P. Hamel and D. Eck, “Learning features from music audio with deep
belief networks.” International Society for Music Information Retrieval
conference (ISMIR), 2010.

[10] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “Unsupervised
learning of sparse features for scalable audio classification,” in Inter-
national Society for Music Information Retrieval conference (ISMIR),
2011, pp. 681–686.

[11] J. Wulfing and M. Riedmiller, “Unsupervised learning of local features
for music classification,” in International Society for Music Information
Retrieval conference (ISMIR), 2012, pp. 139–144.

[12] C. Yeh, M. C., and H. Yang, Y., “Supervised dictionary learning for
music genre classification,” in ICMR, 2012.

[13] C.-C. M. Yeh, L. Su, and Y.-H. Yang, “Dual-layer bag-of-frames model
for music genre classification,” in Proc. ICASSP, 2013.

[14] M. Mandel, G. Poliner, and D. Ellis, “Support vector machine active
learning for music retrieval,” Multimedia systems, vol. 12, no. 1, pp.
3–13, 2006.

[15] D. Turnbull, L. Barrington, D. Torres, and Lanckriet, “Semantic anno-
tation and retrieval of music and sound effects,” IEEE Transactions on
Audio, Speech, and Language Processing, 2008.

[16] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green, “Automatic
generation of social tags for music recommendation,” in Advances in
Neural Information Processing Systems, 2007.

[17] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere, “Autotagger: a
model for predicting social tags from acoustic features on large music
databases,” Journal of New Music Research, vol. 37, no. 2, pp. 115–135,
June 2008.

[18] L. Barrington, M. Yazdani, D. Turnbull, and G. Lanckriet, “Combining
feature kernels for semantic music retrieval,” 2008, pp. 723–728.

[19] B. Tomasik, J. Kim, M. Ladlow, M. Augat, D. Tingle, R. Wicentowski,
and D. Turnbull, “Using regression to combine data sources for semantic
music discovery,” in Proc. International Society for Music Information
Retrieval conference (ISMIR), 2009, pp. 405–410.

[20] E. Coviello, A. Chan, and G. Lanckriet, “Time Series Models for
Semantic Music Annotation,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 19, no. 5, pp. 1343–1359, July 2011.

[21] J. Nam, J. Herrera, M. Slaney, and J. Smith, “Learning sparse feature
representations for music annotation and retrieval,” in International
Society for Music Information Retrieval conference (ISMIR), 2012, pp.
565–570.

[22] K. Ellis, E. Coviello, A. Chan, and G. Lanckriet, “A bag of systems
representation for music auto-tagging,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21-19, pp. 2554–2569, 2013.

[23] J. T. Foote, “Content-based retrieval of music and audio,” in Voice,
Video, and Data Communications. International Society for Optics
and Photonics, 1997, pp. 138–147.

[24] B. Logan and A. Salomon, “A music similarity function based on signal
analysis,” in IEEE International Conference on Multimedia and Expo,
2001, pp. 745–748.

[25] J. Aucouturier and F. Pachet, “Music similarity measures: What’s the
use?” in Proc. International Society for Music Information Retrieval
conference (ISMIR), 2002, pp. 157–163.

[26] M. Slaney, K. Weinberger, and W. White, “Learning a metric for
music similarity,” in Proc. International Society for Music Information
Retrieval conference (ISMIR), 2008, pp. 313–318.

[27] M. Hoffman, D. Blei, and P. Cook, “Content-based musical similarity
computation using the hierarchical Dirichlet process,” in Proc. Inter-

IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 11

national Society for Music Information Retrieval conference (ISMIR),
2008, pp. 349–354.

[28] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “An
efficient hybrid music recommender system using an incrementally
trainable probabilistic generative model,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 16, no. 2, pp. 435–447, 2008.

[29] B. McFee, L. Barrington, and Lanckriet, “Learning content similarity
for music recommendation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 8, pp. 2207–2218, October 2012.

[30] B. Logan, “Mel frequency cepstral coefficients for music modeling,” in
Proc. International Society for Music Information Retrieval conference
(ISMIR), vol. 28, 2000.

[31] T. Bertin-Mahieux and D. P. Ellis, “Large-scale cover song recognition
using the 2d fourier transform magnitude,” in Proceedings of the 13th
International Conference on Music Information Retrieval (ISMIR 2012),
2012.

[32] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, “Temporal pooling and
multiscale learning for automatic annotation and ranking of music au-
dio.” International Society for Music Information Retrieval conference
(ISMIR), 2011.

[33] M. McKinney and J. Breebaart, “Features for audio and music classifi-
cation,” in Proc. International Society for Music Information Retrieval
conference (ISMIR), 2003, pp. 151 –158.

[34] A. Flexer, F. Gouyon, S. Dixon, and G. Widmer, “Probabilistic combina-
tion of features for music classification,” in Proc. International Society
for Music Information Retrieval conference (ISMIR), 2006, pp. 111–114.

[35] A. Berenzweig, B. Logan, P. W. Ellis, D., and B. Whitman, “A large-
scale evaluation of acoustic and subjective music-similarity measures,”
Computer Music Journal, vol. 28, no. 2, pp. 63–76, 2004.

[36] E. Coviello, Y. Vaizman, B. Chan, A., and G. Lanckriet, “Multivariate
Autoregressive Mixture Models for Music Autotagging,” in 13th Inter-
national Society for Music Information Retrieval Conference (ISMIR
2012), 2012.

[37] E. Coviello, B. Chan, A., and G. Lanckriet, “The variational hierar-
chical EM algorithm for clustering hidden Markov models,” in Neural
Information Processing Systems (NIPS 2012), 2012.

[38] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” The
Journal of Machine Learning Research, vol. 5, pp. 819–844, 2004.

[39] R. Lyon, M. Rehn, S. Bengio, C. Walters, T., and G. Chechik, “Sound
retrieval and ranking using sparse auditory representations,” Neural
Computation, vol. 22, no. 9, pp. 2390–2416, 2010.

[40] C. Smith, E. and S. Lewicki, M., “Efficient auditory coding,” Nature,
vol. 439, pp. 978–982, 2006.

[41] Y. Yang and M. Shah, “Complex events detection using data-driven
concepts,” in ECCV, 2012, pp. 722–735.

[42] A. Coates and A. Y. Ng, “The importance of encoding versus training
with sparse coding and vector quantization,” in International Conference
on Machine Learning (ICML), 2011.

[43] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks
in unsupervised feature learning,” Journal of Machine Learning (JMLR),
vol. 15, p. 48109, 2010.

[44] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society. Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[45] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2010.

[46] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” The Journal of Machine Learning
Research, vol. 11, pp. 19–60, 2010.

[47] B. McFee and G. Lanckriet, “Metric learning to rank,” in Proceedings
of the 27th International Conference on Machine Learning (ICML’10),
June 2010.

[48] D. Tingle, Y. E. Kim, and D. Turnbull, “Exploring automatic music
annotation with “acoustically-objectiv” tags,” in Proc. MIR, New York,
NY, USA, 2010.

[49] O. Celma, “Music recommendation and discovery in the long tail,” 2010.
[50] P. Jaccard, “Etude comparative de la distribution florale dans une portion

des alpes et des jura,” Bulletin del la Societe Vaudoise des Sciences
Naturelles, vol. 37, pp. 547–579, 1901.

[51] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” arXiv preprint arXiv:1208.3922, 2012.

Yonatan Vaizman received B.Sc. in Computer Sci-
ence and Computational Biology from the Hebrew
University in Jerusalem, Israel (HUJI) in 2007 and
M.Sc. in Electrical and Computer Engineering from
University of California, San Diego (UCSD) in
2014. He is currently working towards his Ph.D. in
Electrical and Computer Engineering at UCSD. His
research focuses on signal processing and machine
learning methods for computer audition and music
information retrieval.

Brian McFee received the B.S. degree in Computer
Science from the University of California, Santa
Cruz in 2003, and M.S. and Ph.D. degrees in Com-
puter Science and Engineering from the University
of California, San Diego in 2008 and 2012. In 2012,
he joined the Center for Jazz Studies at Columbia
University as a postdoctoral research scholar. His
research interests include applications of machine
learning to music recommendation and audio anal-
ysis. In 2010, he was a recipient of the Qualcomm
Innovation Fellowship. His favorite genre is chip-

tune.

Gert Lanckriet received the MS degree in elec-
trical engineering from the Katholieke Universiteit
Leuven, Belgium, in 2000 and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ence from the University of California, Berkeley, in
2001 and 2005, respectively. In 2005, he joined the
Department of Electrical and Computer Engineering,
University of California, San Diego, where he heads
the Computer Audition Laboratory. His research
focuses on the interplay of optimization, machine
learning, and signal processing, with applications in

computer audition, and music and multimedia information retrieval. He was
awarded the SIAM Optimization Prize in 2008 and is the recipient of a
Hellman Fellowship, an IBM Faculty Award, an NSF CAREER Award, and an
Alfred P. Sloan Foundation Research Fellowship. In 2011, MIT Technology
Review named him one of the 35 top young technology innovators in the
world (TR35). In 2014, he received the most influential 10-year paper award
at the International Conference for Machine Learning (ICML). He is a senior
member of the IEEE.

	Introduction
	Related work
	Our contribution

	Song representation
	Low-level audio features
	Encoding with the LASSO
	Encoding with vector quantization (VQ)
	Encoding with cosine similarity (CS)
	Dictionary training

	MIR tasks
	Query-by-tag (QbT)
	Query-by-example (QbE)

	Experimental setup
	Data
	Processing
	Experiments

	Results
	Conclusion
	References
	Biographies
	Yonatan Vaizman
	Brian McFee
	Gert Lanckriet

