Heterogeneous Embedding for Subjective Artist Similarity
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Overview Quantifying Consistency Similarity Prediction

Goal Construct a similarity measure between artists Data We use aset400 [2]: Evaluation Direct inconsistencies are pruned and the
that agrees with human perception. 412 popular artists data is split for 10-fold cross-validation.
16385 similarity measurements

T o L A INi ize: 252.7
Similarity Similarity between artists is expressed by _ A\\gzgg Ireegtn Isne% ;‘,iezt:lze ?129 5 ?)?ge;)
relative comparisons: Direct Disagreement on the direction of an edge J ' ' 24
(X,y,Z) «==p Artist x is more similar to y than to z. Inconsistency Prediction task 1. Embed the training set (learn projections)
@ @ 2. Map unseen artists into the space
. L o 3. Use distance to predict similarities
ConS|stency Artist similarity is inherently subjective, and (x,y,2) where x is unseen.
may vary from person to person. 7
_ _ : _ : Note that the test set has not been processed
How can we quantify consistency? .Genera.l E |gfr.1e0r|.order dl-s ag:eemer_ts CaS be rimoved for internal consistency, so 100% accuracy
|ncons|stency y Inding maximal aCycCliC subgrapns

_ IS not possible.
Embedding Our similarity measure is defined by the

Euclidean distance between artists. @
@ @ Results

Given the variety of features available, what

is the best way to combine them? MFCC I Optimized
_ Results Chroma Native
Human feedback will help us construct an -y
optimal embedding from the input features. Total number of edges
MFCC+Chroma
Retained edges after pruning MFCC+SM
E b d d = AI = h direct inconsistencies Tags T
m e I n g g o rlt m Average size of maximal Biography 0514
consistent subgraphs Tags+Bio 0.640
. — Number of edges included Tags+MFCC 0.693
Idea View each artist in heterogeneous in all acyclic subgraphs _
feature spaces by using multiple kernels: Tags+Bio+MFCC CE I er———
RN {¢z(x)} K;y _ <¢z($)’ ¢z(y)> 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Problem Features may disagree with human perception Prediction accuracy before and after learning
Features are not all equally informative an optimal embedding
U U
Solution Construct an optimal embedding from the Example
feature spaces by learning projections ; Tags 7737 tags from last.fm l(.\St fm
o \ LL) TF-IDF cosine kernel . ] Linkin Park wii bk
| Nl\l I_ _ Spinefgank ’?-;-.*_."~
: , Biography 16753 words from artist biographies ] Papa Roach o | "
| o] TF-IDF cosine kernel M ook e A
LN OPTIMIZED Limp Bigkit «Queensryche
ARTISTS | I EMBEDDING . . . i Pennywise ° Ra s?é?;\urbelg{age Against the Machine
| ! O MFCC 13 MFCCs + first and second derivatives Rancid Nemggu“qgﬂ'ﬂgv |
o = Modeled by Gaussian mixtures - S« ety Mo
g Probability product kernel ] Goldfingeg® o1 182 Skid Roanes
O| Chroma 12-d summary of pitch distribution White ZQUEk Day
. . . . 0 . . " e First and the Gimme Gimﬁ%godhound Gang ~ *The Offspring
Human The optimization is constrained to match b Modeled by full-covariance Gaussian -gfgeta”'ca g2y Osbourne
perception human perception measurements by Symmetrized KL-divergence kernel ; Training| avheatus 811 Hina tnch Nai i N e Tootgnes.
. . . B mas y | | Tes|a| | | ack Sabbat
Partial Order Embedding [1]: Semantic Distribution over 149 auto-tags | | Smash Houh
Multinomial Derived from MFCCs [3] The metal/punk region of an optimized embeddin
(X,V,2) <=p d?(z,y)+1<d*(z,2) Probability product kernel P J P J
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