
Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

EFFICIENT EVALUATION ALGORITHMS FOR SOUND EVENT DETECTION

Vincent Lostanlen1∗ and Brian McFee2†

1 Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
2 New York University, Music and Audio Research Lab & Center for Data Science, New York, NY, USA

ABSTRACT

The prediction of a sound event detection (SED) system may be rep-
resented on a timeline by intervals whose bounds correspond to on-
set and offset respectively. In this context, SED evaluation requires
to find all non-empty intersections between predicted and reference
intervals. Denoting by M and N the number of predicted events
and reference events, the time complexity of exhaustive search is
O(MN). This is particularly inefficient when the acoustic scene of
interest contains many events (typically above 103) or when the de-
tection threshold is low. Our article presents an algorithm for pair-
wise intersection of intervals by performing binary search within
sorted onset and offset times. Computational benchmarks on the
BirdVox-full-night dataset confirms that our algorithm is signifi-
cantly faster than exhaustive search. Moreover, we explain how
to use this list of intersecting prediction–reference pairs for the pur-
pose of SED evaluation: the Hopcroft-Karp algorithm guarantees an
optimal bipartite matching in timeO((M +N)3/2) in the best case
(all events are pairwise disjoint) and O((M +N)5/2) in the worst
case (all events overlap with each other). The solution found by
Hopcroft-Karp unambiguously defines a number of true positives,
false positives, and false negatives; and ultimately, information-
retrieval metrics such as precision, recall, and F -score.

Index Terms— Evaluation procedures, sound event detection.

1. INTRODUCTION

Given a sound category of interest, the task of sound event detection
(SED) aims to identify occurrences of this sound category within
an audio recording. SED systems are optimized to pinpoint each
instance of the target sound over the time axis. This is known as
“strong” labeling, as opposed to “weak” labeling which only re-
ports presence versus absence. In recent years, the renewed interest
for deep learning in SED has found many fruitful applications to
conservation biology, urban science, industry, and healthcare.

Evaluating the performance of an SED system is not so simple
as evaluating a classifier of acoustic scenes. Let us denote the pre-
diction of the system by x and the reference by y. We use symbols
∧, ∨, and ¬ for conjunction (AND), disjunction (OR), and negation
(NOT) respectively. With weak labels, x and y boil down to a sin-
gle bit, and may be compared with elementary logical operations:
(x ∧ y) for a true positive (TP), (x ∧ ¬y) for a false positive (FP),
and (¬x∧y) for a false negative (FN). The time complexity of this
evaluation is independent of the content of x and y, i.e., O(1).

The situation is different with strong labels since they are local-
ized in time and potentially repeated over multiple instances. For

∗VL is supported by CNRS grant CAPTEO, WeAMEC grant PETREL,
and Horizon Europe BioacAI.

†BM is supported by NSF award 1955357.

this matter, we may express the prediction x in terms of a list of M
time intervals over R: (x1, . . . ,xM) = ([a1, b1], . . . , [aM , bM]).
Each of these intervals represents a different predicted instance of
the target sound, with the lower and upper bound denoting sound
onset (start time) and offset (end time) respectively. Likewise, we
define the reference y as a list ofN intervals: y = (y1, . . . ,yN) =
([u1, v1], . . . , [uN , vN]). The evaluation procedure specifies a bi-
nary operator, later denoted by ≈, which determines whether a pre-
dicted interval xm may be matched to a reference interval yn. An
important example of such operator consists in checking whether
xm and yn have a non-empty intersection:

(xm ≈ yn) ⇐⇒
(
xm ∩ yn

)
̸= ∅

⇐⇒ (am ≤ vn) ∧ (bm ≥ un). (1)

The predicted number of events is equal toM and the true num-
ber of events is equal to N . Meanwhile, computing the number of
true positives (TP) is more challenging because it posits that each
interval cannot be matched more than once during evaluation. For-
mally speaking, we consider a graph G whose vertices are parti-
tioned into two subsets, x and y, and whose edges E correspond to
all interval pairs (xm,yn) satisfying Equation (1). We seek three
subsets X ⊆ x, Y ⊆ y, and Z ⊆ E of highest cardinal, under
the constraint that each vertex xm ∈ X and each yn ∈ Y must be
incident to at most one of the edges in Z . Hence, SED evaluation
comprises two stages:

1. Construct the full edge set

E = {(xm,yn) ⊆ X × Y | xm ≈ yn}, (2)

2. Identify a maximal subset Z ⊆ E such that each interval of
(x ∪ y) appears at most once. In mathematical terms:

∀xm ∈ x,∀xm′ ∈ x \ {xm}, ∀yn ∈ y, ∀yn′ ∈ y \ {yn},
(xm,yn) ∈ Z =⇒

(
(xm′ ,yn) ̸∈ Z

)
∧
(
(xm,yn′) ̸∈ Z

)
(3)

The second stage is efficiently solved by the Hopcroft-Karp algo-
rithm [1]. Meanwhile, our work focuses on the first stage: i.e., to
efficiently identify all candidate matchings. This problem is solv-
able in time O(MN) by comparing all pairs of intervals. However,
in SED settings which cover long time periods, the number of de-
tected intervals may range in the thousands, making the all-pairs
matching approach inefficient in practice.

The key observation is that most comparisons of the form
xm ≈ yn will evaluate to false and can be discarded in advance.
Indeed, if we know a lower bound b on the onset un of yn, then we
can conclude that any interval xm = [am, bm] such that bm < b
is necessarily disjoint from yn; and likewise if we know an upper
bound a on the offset vn such that am > a.

Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

In this article, we propose an algorithm for evaluating SED effi-
ciently; i.e., without examining all pairs. More precisely, our algo-
rithm implements maximum cardinal matching on interval bigraphs
[2], and has an asymptotic time complexity of

O
(
(M +N)(logM + logN) + |E|

√
M +N

)
. (4)

We begin by explaining why a greedy approach, in which all
intervals are visited once, is not guaranteed to return the optimal
number of true positives, and thus should not be used. Then, we
present the two stages of our algorithm: construction of the interval
bigraph and maximum cardinality matching. We discuss the use of
our algorithm since 2021 as part of Task 5 of the DCASE challenge
on few-shot bioacoustic event detection; and its connection with an
existing algorithm for efficient evaluation of sound event detection
in mir eval. We conclude with a performance benchmark on a re-
alistic use case, namely, automatic detection of avian flight calls in
the BirdVox-full-night dataset [3].

2. SUBOPTIMAL GREEDY ALGORITHM

Algorithm 1 Exhaustive search of matching pairs (xm,yn). The
length of E is an upper bound on TP. Complexity: O(MN).
E = list()
for m = 1 to M do

for n = 1 for N do
if xm ≈ yn then

append (xm,yn) to E
end if

end for
end for
return E

Algorithm 2 Greedy search of matching pairs (xm,yn). Lists X
and Y have the same length as Z and contain non-repeating ele-
ments only. This algorithm gives a lower bound on TP and should
not be used for SED evaluation. Worst-case complexity: O(MN).
Z = list()
X = list()
Y = list()
for m = 1 to M do

for n = 1 for N do
if (xm ≈ yn) ∧ (yn ̸∈ Y) then

append (xm,yn) to Z
append xm to X
append yn to Y
break

end if
end for

end for
return X ,Y,Z

At first glance, the evaluation of an SED system may seem easy.
Since the number of true positives (TP) involves non-disjoint pairs
between a prediction interval xm and a reference interval yn, one
could list those pairs exhaustively with a double loop, as in Algo-
rithm 1. Yet, this algorithm involves O(MN) comparisons and

1
FN

FP
1

3
2

FP

onset-
based
(greedy)

offset-
based
(greedy)

optimal

pred.

ref.

pred.

ref.

pred.

ref.
time

2
3

4
3

4
3

2
1

2
1

3
2

3
2

1
FN

1

pred.

ref.

interval
bigraph

FPoverlap-
based
(greedy)

pred.

ref. 1

1

2
FN

2

FN

FP

Figure 1: Top: exhaustive search (Algorithm 1) overestimates the
number of true positives (TP) of sound event detection, defined as
the maximum cardinality matching between prediction (blue) and
reference (orange). Center: greedy search (Algorithm 2) underesti-
mates TP. Bottom: our algorithm (Algorithm 3) returns the correct
value of TP. See Section 2 for details.

only produces an upper bound on TP, since the same interval may
appear in multiple pairs of the list E . A potential workaround con-
sists in defining a list X containing all the prediction intervals that
have been matched so far, and grow it as we traverse the list x; and
likewise for Y and y. By only admitting a new pair (xm,yn) if
xm does not already belong to X nor yn to Y , one guarantees that
each prediction interval is matched to at most one reference interval
and vice versa: see Algorithm 2. This is a form of “greedy” search:
it makes a locally optimal choice at each stage, yet is globally sub-
optimal. In this instance, the inner loop in Algorithm 2 consists in
looking for an unmatched reference interval (yn ̸∈ Y) such that
xm ≈ yn, given an unmatched prediction interval (xm ̸∈ X).

Figure 2 illustrates the problem of SED evaluation between a
prediction of M = 4 intervals and a reference of N = 4 intervals.
The top row, in white, implements Algorithm 1 on this example,
yielding a list E of six pairs, each of the form (xm,yn). Greedy
algorithms, such as Algorithm 2, achieve this by traversing the list
E once, in a predefined order. In this way, they define a sublist Z ⊂
E , which is initialized as the empty list and grown progressively
until all pairs in E have been examined. The second, third, and
fourth rows in Figure 2 show instances of such greedy algorithms,
with variations in priority: i.e., based on earlier onset time am, on
later offset time bm, or on greatest overlap (as done in MIREX). We
observe that, even though these greedy algorithms differ in terms of
pairing sublist Z , both of them leave one prediction event and one
reference event unmatched. Hence, they evaluate the prediction as
yielding three TP, one FP, and one FN.

Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

Yet, all the greedy algorithms mentioned above are suboptimal.
Indeed, in Figure 2, there exists a matching which yields four TP
and no FP nor FN: see bottom row. In the next section, we present
an algorithm which finds this optimal solution in polynomial time.

3. MAIN CONTRIBUTION

Our proposed method comprises two stages: construction of the in-
terval bigraph G = (x ∪ y, E) and maximum cardinality matching.
For the first stage, we write a custom iterative algorithm which is
based on dichotomic search: see Algorithm 3. For the second stage,
we reuse the algorithm of Hopcroft and Karp for maximum cardi-
nality matching of bipartite graphs [1]. The novelty of our method
resides in the faster construction of the set of edges E in the first
stage, by exploiting the temporal logic of intervals in Equation 1.

Algorithm 3 presents our main contributions, i.e., the fast con-
struction of the edge set E . We begin by sorting predicted off-
sets (b1, . . . , bM), yielding a permutation σ satisfying bσ(1) ≤
. . . ≤ bσ(M). Thanks to divide-and-conquer algorithms such as
quicksort, this operation incurs an average-case time complexity of
O(M logM). Likewise, we sort reference onsets (u1, . . . , uN),
yielding a permutation ϕ satisfying uϕ(1) ≤ . . . ≤ uϕ(N) with
average-case O(N logN) time complexity. Then, we initialize
two integers n and µ, pointing to the first element of ϕ and σ
respectively. We define the partial list of sorted predicted offsets
L = (bσ(µ), . . . bσ(M)) and increment µ by the index of the first el-
ement in L exceeding uϕ(n). Since L is already sorted, this element
may be found via binary search, whose number of comparisons is
logarithmic in M in the worst case.

After having updated µ, we store the set {σ(µ), . . . , σ(M)} at
the entry ϕ(n) of a set-valued array S. We increment n by one and
repeat the operation of dichotomic search over the list L with the
new value uϕ(n). We halt this procedure as soon as uϕ(n) exceeds
bσ(M): indeed, for greater values of n, S(ϕ(n)) is known to be
empty. By construction, each set S(ϕ(n)) contains all the indices
of the predicted events whose offsets happen after the onset of the
reference event ϕ(n). Formally:

S(ϕ(n)) =
{
1 ≤ σ(m) ≤M | bσ(m) ≥ uϕ(n)

}
=

{
1 ≤ m ≤M | bm ≥ un

}
(5)

The latter formula in the equation above is obtained after applying
inverse permutations σ−1 and ϕ−1 to indices m and n respectively.
Going back to Equation 1, we observe that (xm ≈ yn) implies
(m ∈ S(n)) but the converse is not necessarily true. However,
if (m ∈ S(n)) for some pair (m,n), a necessary and sufficient
condition for (xm ≈ yn) is (am ≤ vn). Thus, we propose to
refine each set S(n) by intersecting it with the set of all indices m
such that am ≤ vn.

We sort predicted onsets (a1, . . . , aM), yielding a permutation
π which satisfies aπ(1) ≤ . . . ≤ aπ(M). Likewise, we sort ref-
erence offsets (v1, . . . , vN), yielding a permutation ψ which satis-
fies vψ(1) ≤ . . . ≤ vψ(N). Similarly to σ and ϕ in the paragraph
above, these sorting operations incur a cumulated asymptotic cost
ofO(M logM+N logN) in the average case. We reset the integer
to n to N . We set µ to the maximum value of m such that aπ(m)

is below vψ(n). Thanks to sorting, this may be achieved by binary
search, whose worst-case complexity is O(logM). We update the
list S(ψ(n)) by intersecting it with (π(1), . . . , π(µ)). This inter-
section may be implemented efficiently with a hash table, as it does
not involve any numerical comparison. We decrement n by one and

naı̈ve proposed

graph MN (M +N)(logM + logN) + |E|
construction (Algorithm 3)

event matching 2|E| |E|
√
M +N

(Hopcroft-Karp)

Table 1: Upper bounds on the asymptotic time complexities of al-
gorithms for constructing non-disjoint interval pairs E (left column)
and maximum cardinality matching Z (right column) in the worst
case, up to a constant multiplicative factor. See Section 3 for details.

repeat the process until vψ(n) falls below aπ(1). Finally, we build E
incrementally by looping through every valuem ∈ S(n) for n from
1 to N and constructing the pair (xm,yn). In practice, since S(n)
has much fewer than M elements, the number of iterations in this
nested loop is typically much smaller than O(MN). Thus, most of
the computational cost of Algorithm 3 is spent in binary search.

Algorithm 3 Our algorithm lists all edges of an interval bigraph.
E ← ∅
S(1), . . . ,S(N)← ∅ {initialize list of matching indices}
σ ← arg sort(b1, . . . , bM) {sort predicted offsets}
ϕ← arg sort(u1, . . . , uN) {sort reference onsets}
n← 1
µ← 1
while uϕ(n) ≤ bσ(M) {up to last predicted offset} do
L← (bσ(µ), . . . , bσ(M)) {sublist of predicted offsets}
µ← µ+min

{
0 ≤ i ≤ (M − µ) |uϕ(n) ≤ Li+1

}
S(ϕ(n))← {σ(µ), . . . , σ(M)}
n← n+ 1

end while
π ← arg sort(a1, . . . , aM) {sort predicted onsets}
ψ ← arg sort(v1, . . . , vN) {sort reference offsets}
n← N
while vψ(n) ≥ aπ(1) {down to first predicted onset} do
µ← max

{
1 ≤ m ≤ µ | vψ(n) ≥ aπ(m)

}
S(ψ(n))← S(ψ(n)) ∩ (π(1), . . . , π(µ))
n← n− 1

end while
for n from 1 to N {for every reference event} do

for m ∈ S(n) {for every matching prediction} do
E ← E ∪ {(Im, Jn)} {include edge}

end for
end for
return E

As shown in Table 1, Algorithm 3 accelerates graph construc-
tion fromO(MN) toO(M logM+N logN+|E|). If the detector
is perfect (x = y) and if the reference consists of disjoint intervals,
one has M = N = |E|: under this important special case, the time
complexity of graph construction is O(N2) for exhaustive search
(Algorithm 1) versus O(N logN) for binary search (Algorithm 3).
Furthermore, the complexity of event matching is 2N for exhaustive
search versus N

√
N for Hopcroft-Karp. The interest behind our

contribution is that N logN , unlike N2, is dominated by N
√
N ;

thus, after replacing Algorithm 1 by Algorithm 3, the cost of graph
construction is asymptotically negligible, and most of SED evalua-
tion is spent in event matching.

Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

4. PRACTICAL CONSIDERATIONS

4.1. Selecting pairs based on intersection-over-union ratio

We have implemented Algorithm 3 as part of the official evalua-
tion toolkit1 of the DCASE challenge task on “Few-shot bioacoustic
event detection” [4]. This task was inaugurated in 2021 and main-
tained through 2022 and 2023. As part of the challenge rules, we
have stated that, in order to be considered a valid matching, an in-
terval pair (xm,yn) should not only overlap but also have at least
50% of intersection-over-union ratio (IoU). This is a refinement of
Equation 1 in the criterion xm ≈ yn. To accelerate the construc-
tion of the bipartite graph G, we run Algorithm 3 as a prefiltering
stage and then evaluate IoU explicitly on all non-disjoint pairs.

4.2. Interoperability with sed eval

Running Algorithm 3 in conjunction with Hopcroft-Karp yields a
maximal matching Z for G. The set cardinal of Z corresponds to
the number of true positives (TP) of the detector. From this number,
we deduce the following information-retrieval metrics:

Precision =
TP

TP + FP
=
|Z|
M

, (6)

Recall =
TP

TP + FN
=
|Z|
N
, (7)

F1-score =
2

(Precision)−1 + (Recall)−1 =
2|Z|

M +N
, (8)

which are already in widespread use in the DCASE community
thanks to the sed eval toolbox [5]. While sed eval relies on ex-
haustive search (Algorithm 1) for graph construction, we rely on
Algorithm 3. For event matching, both sed eval and our implemen-
tation rely on the Hopcroft-Karp algorithm, as made available by
the SciPy toolbox. Therefore, our implementation returns the same
output as sed eval while being more computationally efficient.

4.3. An important special case: evaluating onset detection

Algorithm 3 generalizes another algorithm, implemented under the
name of “ fast hit windows” in mir eval v0.5 and later [6]. In com-
bination with Hopcroft-Karp, this other algorithm serves to evaluate
sound onset detection efficiently. For future reference, we present
its pseudocode in Algorithm 4. The premise of Algorithm 4 is that
a predicted onset am may be matched to a reference onset un if and
only if they are within a certain time lag δ of each other. Formally:

(am ≈ un) ⇐⇒ |am − un| ≤ δ
⇐⇒ (un ≥ am − δ) ∧ (un ≤ am + δ) (9)

Like Algorithm 3, Algorithm 4 begins by sorting reference on-
sets, which incurs an O(N logN) time complexity. Then, for ev-
ery predicted onset um, it performs binary search over the sorted
list of reference onsets (uϕ(1), . . . , uϕ(N)), while accounting for
the maximum admissible lag δ. This later stage incurs a time com-
plexity of O(M logN); hence, the time complexity of Algorithm
4 is O((N + M) logN). Note that, if there are many more pre-
dicted onsets than reference onsets (N ≫ M), the algorithm may
be accelerated by a factor (logN/ logM) by swapping the roles of
prediction and reference.

1Source code: https://github.com/c4dm/dcase-few-shot-bioacoustic.
The metrics module implement functions slow intersect (Algorithm 1) and
fast intersect (Algorithm 3).

Algorithm 4 An efficient evaluation algorithm for sound onset de-
tection, as implemented in the mir eval v0.5 and later.
E ← ∅
ϕ← arg sort(u1, . . . , uN)
for m from 1 to M do
nmin ← min {1 ≤ n ≤ N | uϕ(n) ≥ am − δ}
nmax ← max {1 ≤ n ≤ N | uϕ(n) ≤ am + δ}
for n from nmin to nmax do
E ← E ∪ (am, uϕ(n))

end for
end for
return E

5. EXAMPLE APPLICATION

To evaluate the speed of exhaustive search (Algorithm 1) versus our
algorithm (Algorithm 3), we evaluate a deep convolutional network
for automatic detection of avian flight calls on an audio recording
from the BirdVox-full-night dataset [3]. This audio recording lasts
for roughly 11 hours and has been annotated by an expert ornithol-
ogist. The reference y contains N = 9113 events. We set the
threshold of the convnet detector to a value such that the prediction
x contains M = 2N = 18226 events.

In the Python programming language, Algorithm 1 takes 65±1
seconds to find all matching pairs between x and y on a personal
computer (2.3 GHz Quad-Core Intel Core i7). On the same com-
puter, Algorithm 3 returns the same output within 11.7 ± 0.1 sec-
onds. Beyond the raw comparison, we note that the speed could be
improved further by resorting to a high-performance compiler such
as Numba. We should also keep in mind that, in practice, comput-
ing the area under the precision–recal curve (AUPRC) requires to
recompute the bipartite graph G for many values of the detection
threshold, including low values when M ≫ N . Furthermore, SED
evaluation is typically performed over several initializations of the
system and across several hyperparameter choices, as in [7]. Hence,
the gain in speed by switching from Algorithm 1 to Algorithm 3 be-
comes significant when conducting a full-scale benchmark.

6. CONCLUSION

With this article, we have stressed the difficulty of making SED
evaluation both correct and computationally efficient, by pointing
out the shortcomings of greedy methods and of exhaustive search.
We have presented an algorithm evaluating sound event detection,
which generalizes an evaluation algorithm for onset detection in
mir eval. Our theoretical analysis and speed benchmark on a long-
duration audio recording demonstrate the interest of this algorithm.

7. ACKNOWLEDGMENT

We thank Colin Raffel for maintaining the mir eval package, which
serves as an inspiration to this work. We also thank Veronica Morfi,
Inês Nolasco, and Shubhr Singh, and Dan Stowell for maintaining
the evaluation software of DCASE Task 5.

8. REFERENCES

[1] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maxi-
mum matchings in bipartite graphs,” SIAM Journal on comput-

Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

ing, vol. 2, no. 4, pp. 225–231, 1973.

[2] A. K. Das and R. Chakraborty, “New characterizations of
proper interval bigraphs,” AKCE International Journal of
Graphs and Combinatorics, vol. 12, no. 1, pp. 47–53, 2015.

[3] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P.
Bello, “Birdvox-full-night: A dataset and benchmark for avian
flight call detection,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 266–270.

[4] V. Morfi, I. Nolasco, V. Lostanlen, S. Singh, A. Strandburg-
Peshkin, L. F. Gill, H. Pamula, D. Benvent, and D. Stow-
ell, “Few-shot bioacoustic event detection: A new task at the
DCASE 2021 challenge,” in Proceedings of the International
Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE), 2021, pp. 145–149.

[5] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for poly-
phonic sound event detection,” Applied Sciences, vol. 6, no. 6,
p. 162, 2016.

[6] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto,
D. Liang, D. P. Ellis, and C. C. Raffel, “mir eval: A transparent
implementation of common mir metrics,” in Proceedings of the
International Society of Music Information Retrieval (ISMIR)
Conference, 2014, pp. 367–372.

[7] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P.
Bello, “Robust sound event detection in bioacoustic sensor net-
works,” PLOS ONE, vol. 14, no. 10, p. e0214168, 2019.

