1' frontiers
in Psychology

ORIGINAL RESEARCH
published: 03 August 2017
doi: 10.3389/fpsyg.2017.01337

OPEN ACCESS

Edited by:
Naresh N. Vempala,
Ryerson University, Canada

Reviewed by:

Dipanjan Roy,
Allahabad University, India

Thomas Grill,

Austrian Research Institute for Arti cial
Intelligence, Austria

Matthew Davies,

Institute for Systems and Computer
Engineering of Porto, Portugal

*Correspondence:
Brian McFee
brian.mcfee@nyu.edu

Specialty section:
This article was submitted to
Cognition,
a section of the journal
Frontiers in Psychology

Received: 01 November 2016
Accepted: 20 July 2017
Published: 03 August 2017

Citation:
McFee B, Nieto O, Farbood MM and
Bello JP (2017) Evaluating Hierarchical
Structure in Music Annotations.
Front. Psychol. 8:1337.
doi: 10.3389/fpsyg.2017.01337

Check for
updates

Evaluating Hierarchical Structure in
Music Annotations

Brian McFee *2*, Oriol Nieto 2, Morwaread M. Farbood 2 and Juan Pablo Bello 2

1 Center for Data Science, New York University, New York, NYniled States, 2 Music and Audio Research Laboratory,
Department of Music and Performing Arts Professions, New Y& University, New York, NY, United States,Pandora, Inc.,
Oakland, CA, United States

Music exhibits structure at multiple scales, ranging from mtifs to large-scale functional
components. When inferring the structure of a piece, differ listeners may attend to
different temporal scales, which can result in disagreemds when they describe the
same piece. In the eld of music informatics research (MIR)t is common to use corpora
annotated with structural boundaries at different levelsBy quantifying disagreements
between multiple annotators, previous research has yieldeseveral insights relevant to
the study of music cognition. First, annotators tend to agre when structural boundaries
are ambiguous. Second, this ambiguity seems to depend on muisal features, time scale,
and genre. Furthermore, it is possible to tune current annation evaluation metrics to
better align with these perceptual differences. However, igvious work has not directly
analyzed the effects of hierarchical structure because thexisting methods for comparing
structural annotations are designed for “ at” descriptiors, and do not readily generalize
to hierarchical annotations. In this paper, we extend and geeralize previous work on
the evaluation of hierarchical descriptions of musical sicture. We derive an evaluation
metric which can compare hierarchical annotations holistally across multiple levels. sing
this metric, we investigate inter-annotator agreement orite multilevel annotations of two
different music corpora, investigate the in uence of acousic properties on hierarchical
annotations, and evaluate existing hierarchical segmenti@n algorithms against the
distribution of inter-annotator agreement.

Keywords: music structure, hierarchy, evaluation, inter-a nnotator agreement

1. INTRODUCTION

Music is a highly structured information medium, containingounds organized both
synchronously and sequentially according to attributeshsas pitch, rhythm, and timbre. This
organization of sound gives rise to various musical notiafisharmony, melody, style, and
form. These complex structures include multiple, inter-depemidevels of information that are
hierarchically organized: from individual notes and chsrdt the lowest levels, to measures,
motives and phrases at intermediate levels, to sectionas parthe top of the hierarchy_erdahl
and Jackendo , 1983 This rich and intricate pattern of structures is one of thistthguishing
characteristics of music when compared to other auditory mmeana, such as speech and
environmental sound.

The perception of structure is fundamental to how listenerpegience and interpret music.
Form-bearing cues such as melody, harmony, timbre, andutex{McAdams, 198pP can be
interpreted in the context of both short and long-term memomierarchies are considered a
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fundamental aspect of structure perception, as musical strast recording or piece. However, it is well known that perception
are best retained by listeners when they form hierarchicadf musical structure is ambiguous, and that annotators often
patterns Deutsch and Feroe, 1981 erdahl (1988)goes so far disagree in their interpretations. For exampldjeto (2015)
as to advocate that hierarchical structure is absolutedgrsal and Nieto et al. (2014 provide quantitative evidence of inter-
for listener appreciation of music since it would be impossibleannotator disagreement, di erentiating between contenthwi
to make associations between nonadjacent segments withouthigh and low ambiguity, and showing listener preference for
Hierarchical structure is also experienced by listenersr @ve over- rather than under-segmentation. The work Bfuderer
wide range of timescales on the order of seconds to minuteg®008) shows that annotators tend to agree when quantifying
in length (Farbood et al., 20)5 Although interpretation of the degree of ambiguity of music segment boundaries, while in
hierarchical structure is certainly in uenced by acculition  Smith et al. (2014disagreements depend on musical attributes,
and style familiarity Barwick, 1989; Clayton, 1997; Drake, 1998genre, and (notably) time-scale. Dierences in time-scale a
Drake and El Heni, 2003; Bharucha et al., 2006; Nan et aparticularly problematic when hierarchical structures aret n
2009, there are aspects of it that are universal. For exampleonsidered, as mentioned above. This issue can potentialljtre
listeners group together some elements of music based an a lack of di erentiation betweersuper cial disagreements,
Gestalt theory Deutsch, 1999; Trehub and Hannon, 200&nd  arising from di erent but compatible analyses of a piece, from
infants have been shown to di erentiate between correctly an fundamentatiscrepancies in interpretation, e.g., due to attention
incorrectly segmented Mozart sonatas(mhansl and Jusczyk, to di erent acoustic cues, prior experience, cultural in uesgon
1990.1 the listener, etc.

The importance of hierarchical structure in music is further The main contribution of this article is a novel method for
highlighted by research showing how perception of structureneasuring agreement between hierarchical music segniemsat
is an essential aspect of musical performanCecak, 2003  which we denote as thie-measureThe proposed approach can
Examination of timing variations in performances has showrbe used to compare hierarchies of di erent depths, including
that the lengthening of phrase endings corresponds to theat segmentations, as well as hierarchies that are not align
hierarchical depth of the endingr¢dd, 1985; Sha er and Todd, in depth, i.e., segments are assigned to the same hierarchica
1987. Performers also di er in their interpretations much like level but correspond to di erent time-scales. By being ingati
listeners (or annotators) di er in how they perceive strusu”A to super cial disagreements of scale, this technique can
combination of converging factors can resultin a clearstival be used to identify true divergence of interpretation, and
boundary, while lack of alignment can lead to an ambiguoushus help in isolating the factors that contribute to such
boundary. In ambiguous cases, listeners and performers maiy erences without being confounded by depth alignment
focus on di erent cues to segment the music. This ambiguity haerrors.
not been the focus of empirical work, if only because it is (by The L-measure applies equally to annotated and automatically
de nition) hard to generalize. estimated hierarchical structures, and is therefore héhofboth

Unsurprisingly, structure analysis has been an important aremusic cognition researchers studying inter-subject agesgm
of focus for music informatics research (MIR), dealing witeka and to music informatics researchers seeking to train and
such as motif- nding, summarization and audio thumbnaigin  benchmark their algorithms. To this end, we also describeghr
and more commonly, segmentation into high-level sectisee( experimental studies that make use of the proposed method.
Paulus et al., 201for a review). Applications vary widely, from The rst experiment compares the L-measure against a number
the analysis of a variety of musical styles such as jazik¢ of standard at metrics for the task of quantifying inter-
et al., 201p and opera Y{Veil? et al.,, 2015 to algorithmic annotator agreement, and seeks to highlight the properties of
composition (Herremans and Chew, 2016; Roy et al., 2@&rfd  this technique and the shortcomings of existing approaches. Th
the creation of mash-ups and remixésgvies et al., 20)4 second experiment uses the L-measure to identify fundanhenta

This line of work, however, is often limited by two signi can disagreements and then seeks to explain some of those di esenc
shortcomings. First, most existing approaches fail to actéam in terms of the annotators focus on speci ¢ acoustic attrimit
hierarchical organization in music, and characterize stiwe  The third experiment evaluates the performance of hierasmhic
simply as a sequence of non-overlapping segments. Barrimggmentation algorithms using the L-measure and advances a
a few exceptions cFee and Ellis, 2014a,b; McFee et al.novel methodology for MIR evaluation that steps away from
2015a; Grill and Schltter, 201 %his at temporal partitioning the “ground-truth” paradigm and embraces the possibility of
approach is the dominant paradigm for both the designmultiple valid interpretations.
and evaluation of automated methods. Second, and more
fundamentally, automated methods are typically trained and
evaluated using a single “ground-truth” annotation for Bac 2. CORPORA
recording, which relies on the unrealistic assumption there
is a single valid interpretation to the structure of a givenin our experiments, we use publicly available sets of hiefeath

structural annotations produced by at least two music experts

Lin the context of the present article, these two elements (culturdluniversal) per track. To the best of our knowledge, the only published data

are not di erentiated because the listeners who provide hieraahanalyses all S€tS that_meet these criteria are SALAMIh(ith et al., 201)land
had prior experience with Western music. SPAM (Nieto and Bello, 2016
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2.1. SALAMI time intervals, which are denoted ssgments-or a recording of

The publicly available portion of th8tructural Annotations for duration T samples, a segmentation can be encoded as mapping
Large Amounts of Music InformatiofBALAMI) set contains of samplest 2 [T] D f1,2;:::,Tgto some set of segment
two hierarchical annotations for 1,359 tracks, 884 of whicHabelsY D fyi,y2,:::,¥g which we will generally denote as a
have annotations from two distinct annotators and are imtdd ~ function S: [T] ! Y. For exampleY may consist of functional

in this study. These manual annotations were produced by kbels, such amtro and verse or section identi ers such aé

total of 10 di erent music experts across the entire set, anéndB. A segment boundaiig any time instant at the boundary
contain three levels of segmentations per tracle, coarse between two segments. Usually this corresponds to a change of
and function The ne level typically corresponds to short labelSt) 6Dt 1) (fort > 1), though boundaries between
phrases (described by lower-case letters), whiletizesesection  similarly labeled segments can also occur, e.g., when a pésce h
represents larger sections (described by upper-case lefférs) anAA form, or a verse repeats twice in succession.

function level applies semantic labels to large sections, e.g., When comparing two segmentations—denoted as the
“verse” or “chorus” &mith et al., 201)1 The boundaries of the reference 5 and estimate S—a variety of metrics have
function level often coincide with those of the coarse Iglvet for  been proposed, measuring either the agreement of segment
simplicity and consistency with SPAM (described below), we dboundaries, or agreement between segment labels. Two
not use the function level. The SALAMI dataset includes musisegmentations need not share the same lab&,s@hce di erent
from a variety of styles, including jazz, blues, classigaktern annotators may not use labels consistently, so evaluatiterieri

pop and rock, and non-western (“world”) music. We manuallyneed to be invariant with respect to the choice of segment
edited 171 of the annotations to correct formatting erroreda labels, and instead focus on the patterns of label agreement
enforce consistency with the annotation gufi@he corrected shared between annotations. Of the label agreement methies

data is available onliné. two most commonly used arpairwise classi catiorfLevy and
Sandler, 2008&andnormalized conditional entrogyzukashevich,
2.2. SPAM 2008.

The Structural Poly Annotations of Musis a collection of o o

hierarchical annotations for 50 tracks of music, each antest  3.1.1. Pairwise Classi cation . .

by ve experts. Annotations contaioarseand ne levels of The pairwise classi cation metrics are derived by computing t
segmentation, following the same guidelines used in SALAMEELA of pairs of similarly labeled distinct time instants, {)
The music in the SPAM collection includes examples from th&Vithin a segmentation:

same styles as SALAMI. The tracks were automatically sampled _

from a larger collection based on the degree of segment banynd A9:D (uv) SuD{y) . @)
agreement among a set of estimations produced by di ereNbairwise precision (P-Rrecision) and recall (P-Recall) scare

algonthr_ns (ieto and Bfello, 2016 Forty- ve of.these trgcks then derived by comparing S toA < :
are particularly challenging for current automatic segnaeian

algorithms, while the other ve are more straightforwardterms AR\VASE

of boundary detection. In the current work we treat all track P-PrecisionS, & :D — s )

equally and use all 10 pairs of comparisons between di erent A

annotators per track. The SPAM collection includes some ef th p-Recall R € D ASVASE 3)

same audio examples as the SALAMI collection described above, ' ' A R '

but the annotators are distinct, so annotation data is stlare

between the two collections. The precision score measures the correctness of the predicted
label agreements, while the recall score measures how many

3. METHODS FOR COMPARING of the reference label agreements were found in the estimate

Because these scores are de ned in terms of exact labehagmee
between time instants, they are sensitive to matching thetexa

The primary technical contribution of this work is a new way !EVE| of speci city in the analysis encoded by the two anriotat

. . . -“7in question. IfSF is at a higher (coarser) or lower ( ner) level
of comparing structural annotations of music that span mukipl . S
- . . . of speci city than K, the pairwise scores can be small, even
levels of analysis. In this section, we formalize the probleru\’I
C
p

statement and describe the design of the experiments in whi tﬁ;ﬁg&in;?go?zv?éi dn;:tt:ﬁlr!ys(;%?zztjm' Examples of this
we test the method. P '

ANNOTATIONS

. . 3.1.2. Normalized Conditional Entropy
3.1. Comparing Flat Segmentations The normalized conditional entropy (NCE) metrics take a

Formally, asegmentationf a musical recording is de ned by @ g erent approach to measuring similarity between annotation
temporal partitioning of the recording into a sequence of lale

4Although segmentations are typically produced by annotators witheference
2The SALAMI annotation guide is available at http://music.mcgillgordan/ to a xed time grid, it is standard to evaluate segmentations afeéesampling
salami/SALAMI-Annotator-Guide.pdf. segment labels at a standard resolution of 10 Rz €l et al., 201} which we
Shttps://github.com/DDMAL/salami-data-public/pull/15 adopt for the remainder of this article.
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Given the two at segmentationS® and S, a joint probability A common solution to this ambiguity is to combine precision
distribution P yR,yE is estimated as the frequency of timeand recall scores into a single summary number. This is most
instantst that receive labg/R in the reference andyF in the  often done by taking the harmonic mean of precisi®and recall

estimateS™: R, to produce thé=1-score of--measure:
P R
PYRyE 1t SSODYNS(t)DyF @) FD2- . @)
PCR
From the joint distribution P, the conditional entropy IS For the remainder of this article, we summarize the agreeémen
computed between the marginal distributioR8 and P*: between two annotations by thE-measure, using precision
X R R and recall for pairwise classication, and over- and under-
H PE PR D P YR VE log Pty (5) segmentation for NCE metrics.
' P YR,y

yRyE 3.2. Hierarchical Segmentation

. A hierarchical segmentatiima sequence of segmentations
The conditional entropy therefore measures how much 9 9 9

information the reference distributionPR conveys about HD (9SS, (9)
the estimate distributionPE: if this value is small, then the _ _ _
segmentations are similar, and if it is large, they are uligat. where the ordering typically encodes a coarse-to- ne angigs

The conditional entropy is then normalized by IogF : the  the recording. Eacl§ in a hierarchy is denoted aslavel We
maximum possible entropy for a distribution over laba&f§>  assume that the rst levedp always consists of a single segment
The normalized entropy is subtracted from 1 to produce the sowhich spans the entire track duratidh.
calledover-segmentation ScOME€E,, and reversing the roles of ~ Most often, when presented with two hierarchical
the reference and estimate yields theder-segmentation score segmentationsHR and HE, practitioners assume that the

NCE,: hierarchies span the same set of levels, and compare the
hierarchies level-by-levels} to S, S, S5, etc, or between
H PE PR all pairs of levels§mith et al., 2011 This results in a set of

NCE:D 1 W © independently calculated scores for the set of levels, rathe

H PR PE than a score that summarizes the agreement between the two
R — (7) hierarchies. Moreover, this approach does not readily extend
log YR to hierarchies of di ering depths, and is not robust to depth

alignment errors, where one annotatoB may correspond to
The naming of these metrics derives from their application inthe other'sS.
evaluating automatic segmentation algorithms. If the reate To the best of our knowledge, no previous work has
has large conditional entropy given the reference, thensiisl  addressed the problem of holistically comparing two labeled
to beover-segmentegince it is di cult to predict the estimated hjerarchical segmentations. Our previous wotkcfee et al.,
segment label from the reference: this leads to a smallNCE2015) addressed the unlabeled, boundary-detection problem,
Similar reasoning applies to NGEf H PR PE islarge, thenitis which can be recovered as a special case of the more general

di cultto predict the reference from the eStimate, so theiesate formulation derived in the present work (Where each segment
is thought to beunder-segmentetand hence a small NGE receives a unique label).

score). If both NCE and NCE, are large, then the estimate is
neither over- nor under-segmented with respect to the rafeee  3.2.1. Hierarchical Label Agreement
Given a hierarchical segmentatidhas de ned in Equation (9)

NCE,;:D 1

3.1.3. Comparing Annotations and time instantsi, v, de ne themeetof u andv underH as
When comparing two annotations in which there is no
privileged “reference” status for either—such as the casie wi M(u,vj H) :D maxk such that§(u) D &(v),  (10)

segmentations produced by two di erent annotators of equalh s M M) is the level of wh q .
status—the notions of precision and recall, or over- and unde thatis, (u,vj H) is the deepest level bf whereu andv receive

segmentation can be dubious since neither annotation isasd t,he same Iab.ell. The ”:eet Efduce; a pa(rjtllal ordehrllnr? ((j)ver pfalrfs 0
to be “correct” orground truth Arbitrarily deciding that one time instants: large values b(u, vj H) indicate a high degree o

annotation was the reference and the other was the estima?ém_lllamy’ and small;]/aluesrl:jdlclzate low S|m_|largy. dHE
would produce precision and recall scores, but reversingalesr o_compalre thO dllelrarc ica §egmentat|qﬂ an f v;/]e
of the annotations would exchange the roles of precision an§xamine triples of distinct time Instanisu, v in terms of the

i R R
recall, since P-Precisiol| ) D P-Recallg?, &), pairwise meet t,u H and M tv H" . We de ne the
reference comparison set for a hierardtyas

51t has been recently noted that maximum-entropy normalization can aitilly
in ate scores in practice because the marginal distribut®nis often far from
uniform. See https://github.com/cra el/mir_evallissues/226 fatalls. For the
remainder of this article, we focus comparisons on the pairwise cltibn  °If S is not provided, it can be trivially synthesized. Includifigin the hierarchy
metrics, but include NCE scores for completeness. is useful for ensuring that the metrics derived in Section 3.22Meell-formed.

A(H):D (t,u,v) M.t,ujH/ > M.t,vjH/ , (11)
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that is, the set of triples wherg, (1) agree at a deeper level than on each plot is the best- t robust (Huber's T) linear regressio
the pair ¢, V). line, with shaded regions indicating the 95% con dence iingds
Level-independent precision and recall scorésPrecision as estimated by bootstrap sampling@ 500 trials). This gure
andL-Recall—can be de ned, just as in the pairwise classi cationdemonstrates a general trend of positive correlation between
method of Section 3.1.1, by comparing the size of the intéisec the L-measure and at segmentation metrics at both levels,

to the reference comparison set: indicating that the L-measure integrates information a&sdhe
o . entire hierarchy. Additionally, this plot exhibits a high deg of
AH™\ A(H i irwi i cati i
L-Precision HR HE D (H\ A(H) (12) correlation between the pairwise classi cation and NCE metric
A(HE) when conned to a single level. For the remainder of this
R E section, we will focus on comparing L-measure to the pairwise
R 1IE AHT)\ AH®) - . . L .
L-RecallH™,H* D ———————. (13) classi cation metrics, which are more similar in implemetiba
A(HT) to L-measure.

To get a better sense of how the L-measure captures
agreement over the full hierarchysigure 3 compares the L-
measure to the maximum and minimum agreements across

These scores capture the rank-ordering of pairwise simylarit
between time instants, and can be interpreted as a relaxafion
the pairwise classi cation metrics. We de ne tlheMeasureas levels of the hierarchy: that isL(HR HE) compared to

the harmonic mean of L-Precision and L-Recall. max F(ﬁ.f)ﬁ(@.i) _The resulting plots are broken into

Rather than asking if an annotation describes two instants . S
(U,V) as thesameor dierent, the scores de ned here ask guadrants I-IV along the median values of each metric, iathd

. T in red. To simplify the presentation, we only compared the L-
whether €, u) asmore similaror less similato each-other than S
. L . measure to the pairwise F-measure scores, though the results
the pair ¢,v), and whether that ordering is respected in both . o -
. : . - using normalized conditional entropy scores are qualitdyive
annotations. An example of this process is illustratefigure 1

- similar. Of particular interest in these plots are the pointsand
Consequently, the proposed scores are robust to depth allgnme{P]e maximum is small (disagreement at both levels) or the
errors between annotations, and readily support comparisorrlmnimum is large (agreement at both levels), and how the L-
between hierarchies of di ering depth. measure scores these points. ’

Quantitatively, of the points below the median of maximum
4. EXPERIMENT 1: L-MEASURES AND F-measure (quadrants Il and Il dfigure 3, left), 81% lie below
FLAT METRICS the median L-measure (quadrant Ill). Conversely, the points

above the median of minimum F-measure (quadrants | and
Our rst experiment investigates how the L-measure desctibe |y of Figure 3, right) have 75% above the median L-measure
above quanties inter-annotator agreement for hierar@lic (quadrant I). These two quadrants (I and Il) correspond to
music segmentation as compared to metrics designed for a§ybsets of examples where the L-measure broadly agreeswith t
segmentation$. pairwise F-measure scores, indicating that there is littttitional
4.1 Methods discriminative information encoded in the hierarchy beybn

The data sets d ibed in Section 2 ist of icaldi what is captured by level-wise comparisons. The remaining
€ data sets described in Seclion 2 consist of musicaldetys, points correspond to inversions of score from what would

eacE of Whlc.h hjls ?t Ieuast tW%.h |Erlarch||cal %Tnmat'lo nsciwarle be expected by level-by-level comparison: quadrant Il in the
each comprised ot a pper( igh-level) an ower (low-level) eft plot (9.5% of points), and IV in the right plot (12.6% of
segmentations. For each pair of annotations, we compare the |-

measure to existing segmentation metrics (pairwise cleasbn

oints).
. > Figure 4 illustrates example annotations drawn from each
and normalized conditional entropy) at both levels of the g P
hierarchy.

guadrant of the left plot ofFigure 3 (across-layer maximum vs.
. . . . L-measure). The two plots in the left column, corresponding to
. Frorr_1 this set of comparisons, we hope to identify eXfimpleauadrants Il and Ill, illustrate examples where the at metrics
illustrating the following behaviors: pairs where the at tries disagree at both levels. The top-left plot (track 347) aclieve
are small because the two annotations exist at di erent kwoél large L-measure because the rst annotator's upper-levethest
analysis; and pairs where the at metrics are large at oné, lbue

small at the other, indicating hierarchical disagreeméntthe

well to the second annotator's lower level, but not to the
calculation of all evaluation metrics, segment labels anepted

second annotator's upper-level. However, the two hierarchies
o . . are generally consistent with one another, and the L-measure
at a rate of 10 Hz, which is the standard practice for segmemtat g y
evaluation Ra el et al., 201

identi es this consistency. The top-right plot (track 555hé&ves
large pairwise agreement at the upper level (aside fEdf) these
4.2. Results and Discussion annotations are equivalent up to a permutation of the lahels)

Figure 2 illustrates the behavior on SALAMI of the L-measurePUt Small pairwise agreement at the lower level, because the
compared tothe atsegmentation metrics (right column), asliw annotators disagree about whether the lower-level segtabats

as all other pairs of comparisons between metrics. Overlaiddn r "€P€at in the second half of the song. Just as in the previous
example (347), these two hierarchies are mutually consisiadt,

7Our implementations for the experiments included in this paper are abkilat the L-measure produces a high score for this pair. The bottom-
https://github.com/bmcfee/segment_hierarchy_labels. left plot (track 436) appears to consist of genuinely incompatible
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FIGURE 1 | The L-measure is computed by identifying triples of time itants (, u, v) where ¢, u) meet at a deeper level of the hierarchy (indicated by solighés) than
(t, v) (dashed lines), as illustrated in the left plot (Annotat@). In this example, the left annotation had/(t, u) D 2 (both belong to lower-level segments labeled asl),
and M(t, v) D 1 (both belong to upper-level segments labeled a<C). The right annotation hasM(t, u) D M(t, v) D 2: all three instants belong to segment label, as
indicated by the solid lines. This triple is therefore courtl as evidence of disagreement between the two hierarchies.

hierarchies, resulting in small scores across all metritee  assumptions about equivalent level structure or performing

bottom-right plot (track 616) illustrates agreement in thpper  comparisons between all pairs of levels. In the minority of

level, but signi cant disagreement in the lower level, whis  cases (22%) where the L-measure substantially disagréethevit

taken as evidence of hierarchical disagreement and prodmcedevel-by-level comparison, the disagreements betweenicaetr

small L-measure (0.30). are often explained by the at segmentations not accounting
Similarly, Figure 5 illustrates examples drawn from each for hierarchical structure in the annotations. The exceptio

quadrant of the right plot inFigure 3 (across-layer minimum vs. this are annotations with low label diversity across multiple

L-measure). Here, the right column is of interest, sincestsl levels, where the L-measure can assign a small score due to

annotations where the at metrics agree at both levels (gqaats  insu ciently many contrasting triples to form the evaluation

I and IV). The top-right plot (track 829) contains virtually (Figure 5 bottom-right).

identical hierarchies, and produces high scores under dtiose

The bottom-right plot (track 1342) consists of two esseltial 5. EXPERIMENT 2: ACOUSTIC

at hierarchies where each lower-level contains the sarbella

structure as the corresponding upper level. The large at nestri ATTRIBUTES

here & D 0.80) are easily understood since the majority of pair:

of instants are labeled similarly in both annotations, etoey

those (1, V) for whichu s in sectionC/cfor the second annotation

and v is not, which are in the minority. The small L-measure

(0.39) for this example is a consequence of the lack of lab

diversity in the rst annotation, as compared to the secongt. B 5 1 Methods

the de nition in Equation (11), the L-measure only comparest, aitempt to quantify attribute-based disagreement, we
triples ¢, u,v) where the labels fou and v dier, and in the o5 cted four acoustic features from each recording g to
second annotation, most of these triples contain an examplgapture aspects relating to tempo, rhythm, harmony, and timbre

from the C/csections. Since the second annotation provides ney - pynothesis was that if hierarchical annotations receivel
information to disambiguate whethe is more similar toA or | o cire and the annotators are indeed cued by di erent

Z, thet Lt-'measure assigns a small score when compared to the rst,stic properties, then this e ect should be evident when
annotation.

T the second experiment, we investigate annotator disageee
with respect to acoustic attributes. Two annotations thatjurce

a small L-measure may be due to annotators responding to
gi erent perceptual or structural cues in the music.

comparing annotations in a representation derived from atious

A similar phenomenon can be observed in the bottom-lefig a5 - All audio was down-sampled and mixed to 22,050 Hz
plot (track 768), in which the rst annotator used a single labe mono prior to feature extraction, and all analysis was perfedm

to describe the entire track in each level. In this case, Inesir with librosa 0.5dev NicFee et al., 2013b A visualization

of the comparison triples derived from the second annotationys he features described in this section is provided in
are not found in the rst, resulting in an L-measure of 0.06. | Figure 6

is worth noting that the conditional entropy measures would

behave similarly to the L-measure here, since the rstaatioh  5.1.1. Tempo Features

has almost no label entropy in either level. The tempo features consist of the short-time auto-corretatf
To summarize, the L-measure broadly agrees with the levejhe onset strength envelope of the recording. This featuredty

by-level comparisons on the SALAMI dataset without requiringcaptures the timing structure of note onsets centered arowauthe
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FIGURE 2 | Relations between the different segment labeling metricsrothe SALAMI dataset. Each subploti(j) corresponds to a pair of distinct metrics foii 60, while
the main diagonal illustrates the histogram of scores for thith metric. Each point within a subplot corresponds to a pair 6annotations of the same recording. The
best- t linear regression line between each pair of metricssi overlaid in red, with shaded regions indicating the 95% codence intervals.

time point in the recording. The location of peaks in the onset5.1.2. Rhythm Features
strength auto-correlation can be used to inferthe tempo atary  The rhythm features were computed by applying the scale
time. (Mellin) transform to the tempo features derived abo(ien,
The onset strength is computed by the spectral ux of al993; De Sena and Rocchesso, 00The scale transform
log-power Mel spectrogram of 128 bins sampled at a framenagnitude has been used in prior work to produce an
rate of 43 Hz (hop size of 512 samples), and spannin@pproximately tempo-invariant representation of rhythmic
the frequency range up to 11,025 Hz. The short-time autoinformation (Holzapfel and Stylianou, 20),1so that similar
correlation is computed over centered windows of 384 frameghythmic patterns played at di erent speeds result in similar
( 8.9s) using a Hann window, resulting in a feature matrixfeature representations.
X 2 R4 T (for T frames). The value & [i,] is large if an At a high level, the scale transform works by re-sampling the
onset envelope peak at frais likely to co-occur with another onset auto-correlation—i.e., each columnXfde ned above—
peak at framg C i. Each column was normalized by its peakon a logarithmic lag scale from a minimum lag > O to the
amplitude. maximum lag, which in our case is the auto-correlation windo
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FIGURE 3 | For each pair of annotations in the SALAMI dataset, we comparthe L-measure to the maximum and minimum agreement betweethe upper and lower
levels. Agreement is measured by pairwise frame classi cath metrics. Red lines indicate the median values for each met. A small maximum F-measure (quadrants
Il 'and Il in the left plot) indicates disagreement at both lewela large minimum F-measure (quadrants | and 1V in the rightqd) indicates agreement at both levels.

length (384 frames). This transforms multiplicative scaglim  matrices would require a large amount of memory to process (
time to an additive shiftin logarithmic lag. The Fouriertrsform 3 GB for a four-minute song). We therefore down-sampled the
of this re-sampled signal then encodes additive shift as compldeature matrices to a frame rate of 4 Hz by linear interpolatio
phase. Discarding the phase information, while retaining therior to computing the self-similarity matrices below. The e
magnitude, produces a tempo-invariant rhythm descriptor. and rhythm features are relatively stable across largeneste
The scale transform has two parameters which must be seif time (each frame spans 8.9s), but the chroma and MFCC
the minimum lagtp (in fractional frames), and the number of features are con ned to much smaller local regions de ned by
scale bins (analogous to FFT bins), which we setttoD 0.5 their window sizes. To improve the stability of similarityr filve
andn D 64. Because the input (onset autocorrelation) is realehroma and MFCC features, each frame was extended by time-
valued, its scale transform is conjugate-symmetric, soiseadd delay embedding{antz and Schreiber, 20i4oncatenating the
the negative scale bins to produce a representation of dirnansi features of the previous two frames (after down-sampling)sTh
bn=2c C 1. The log-power of the scale transform magnitude waprovides a small amount of local context for each observation

computed to produce the rhythm featur¥s 2 R33 T. and is a commonly used technique in music structure analysis
algorithms Gerra et al., 20)2
5.1.3. Chroma Features We then computed self-similarity matrices for each feature

The harmony features were computed by extracting pitch classith a Gaussian kernel:
(chromg features at the same time resolution as the tempo . )
and rhythm features. Specically, we applied the constant-Q Glu,v] :D e ~KXul X[k (24)
transform magnitude using 36 bins per octave spanning theeang
(C1,C8), summed energy within pitch classes, and normalizegvhere X[t] denotes the feature vector at frante and the
each frame by peak amplitude. This resulted in a chromagrarhandwidth is estimated as
X 2RE T

:D mean, mediarkX[u]  X[V]K>. (15)
5.1.4. Timbre Features
Finally, timbre features were computed by extracting the 28 ~ Similarly, for each annotation, we computed the meet maltfix
Mel frequency cepstral coe cients (MFCCs) using a log-powerby Equation (10) (also at a frame rate of 4 HE)gures 9 10
Mel spectrogram of 128 bins, and the same frame rate as thifustrate examples of the feature-based self-similarityrives,
previous features. This resulted in the MFCC feature matrix2. ~ as well as the meet matrices for two annotations each.

RO T To compareM to each of the feature-based self-similarity
matrices G ,G ,G ,G , we rst standardized each matrix
5.1.5. Comparing Audio to Annotations by subtracting its mean value and normalizing to have unit

To compare audio features to hierarchical annotations, wé&robenius norm:
converted the audio features described above to selfasiityil

matrices, described below. However, because the featuees a : .
sampled at a high frame rate, the resultiig T self-similarity D mean,D[u,v] .

b:D D mean,D[u,V] (16)

Frontiers in Psychology | www.frontiersin.org 8 August 2017 | Volume 8 | Article 1337



McFee et al. Evaluating Hierarchical Structure in Music Annotations

FIGURE 4 | Four example tracks from SALAMI, one drawn from each quadrardf Figure 3 (Left) , which compares L-measure to the maximum of upper- and
lower-level pairwise F-measure between tracks. For eachdck, two hierarchical annotations are displayed (top and btom), and within each hierarchy, the upper level
is marked in green and the lower in blue(Upper right) Track 555 (L D 0.94, upper F D 0.92, lower F D 0.69) has high agreement at the upper level, and small
agreement at the lower level(Upper left) Track 347 (L D 0.89, upper F D 0.65, lower F D 0.19) has little within-level agreement between annotaties, but the upper
level of the top annotation is nearly identical to the loweeVel of the bottom annotation, and the L-measure identi es ths consistency. (Bottom left) Track 436

(L D 0.24, upper F D 0.35, lower F D 0.44) has little agreement at any level, and receives smaktares in all metrics.(Bottom right) Track 616 L D 0.30, upper

F D 0.998, lower F D 0.66) has high agreement within the upper level, but disageenent in the lower levels.

The inner product between normalized self-similarity me&$ to the annotationM:

X
e D Muveuy (17) ZM):D W&, (18)

uyv

F

To compare two annotationsH R HE with meet matrices
can be interpreted as a cross-correlation between the vizetbor MR ME, we could compute the Euclidean distance between
forms of M and G, and due to normalization, takes a value inthe corresponding-vectors. However, correlated features (such
[ 1,1]. Collecting these inner products against e@&matrix as tempo and rhythm) could arti cially in ate the distance
results in a four-dimensional vector of feature-based kirity  calculation. We therefore de ne a whitening transfor 1,
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FIGURE 5 | Four example tracks from SALAMI, one drawn from each quadrardf Figure 3 (Right) , which compares L-measure to the minimum of upper- and
lower-level pairwise F-measure between tracks(Upper right) Track 829 (L D 0.94, upper F D 0.93, lower F D 0.96) has high agreement at the both levels, and
consequently a large L-measure(Upper left) Track 307 L D 0.94, upper F D 0.92, lower F D 0.11) has high agreement in the upper level, but the rst annattor did
not detect the same repetition structure as the second in thdower level.(Bottom left) Track 768 (L D 0.06, upper F D 0.43, lower F D 0.18) has little agreement at
any level because the rst annotator produced only single-lael annotations. (Bottom right) Track 1342 (L D 0.39, upper F D 0.80, lower F D 0.80) has high pairwise
agreement at both levels, but receives a small L-measure bewse the rst annotator did not identify the distinctC/c sections indicated by the second annotator.

where By introducing the whitening transformation, we reduce the
inuence of correlations between acoustic features on the

WIi,jl :D b, . (19)  resulting annotation distance A large distance indicates that

the hierarchies correlate with di erent subsets of featurses

This provides a track-dependent, orthogonal basis for conmgari ;.o expect an inverse relationship betweeand the L-measure
meet matricedR and ME. The distance between annotations IShetween the annotations.

then de ned by

q 5.2. Results and Discussion
HRHE :D zMR zME "W 11lzMR 2z ME . The results of the acoustic feature correlation experimest a
(20) displayed inFigure 7. As expected, the score is inversely
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FIGURE 6 | Features extracted from an example track in the SALAMI dat&s, as described in Section 5.

related to the L-measurer (D  0.61 on the SALAMI data with considerably less than the other annotators. Thesaltes
set,r D 0.32 on SPAM). Because the SPAM dataset wakemonstrate that a small set of annotators are likely to preduc
explicitly constructed from di cult examples, it produces sitex  signi cantly di erent interpretations of musical structureeven
L-measures on average than the SALAMI dataset. Howeverhen they are following a common set of guidelines.
the SPAM annotators did not appear to produce low label- Figure 9illustrates the self-similarity matrices for SALAMI
diversity annotations that generate small L-measures,h&o t track 410Erik Tru az—Betty, a jazz recording featuring trumpet,
overall distribution is more concentrated. Thedistribution is  piano, bass, and drums. The two annotations for this track
similar across both datasets, which explains the apparemtig la produce a small L-measure of 0.25, and a largeore of 0.67. In
discrepancy in correlation coe cients. this example, the two annotators appear to be expressing di erent
The estimated mean feature correlations are displayed iapinions about the organization of the piece, as illustratethe
Figure 8 Because the SPAM dataset provides all combinatiomgght-most column ofFigure 9. Annotator 1 rst separates the
of the ve annotators with the fty tracks, it is more amenabl extended nal fermata from the rest of the recording in the uppe
to statistical analysis of annotator behavior than the SMLA level, and then segments into repeated 4-bar progressiorin t
dataset. Using the SPAM dataset, we investigated theaesdtip  lower level. Annotator 2 groups by instrumentation or texun
between feature types and annotators. A two-way, repeateehe upper level, separating the piano and trumpet solos (center
measures ANOVA was performed with annotator and featureslocks) from the head section, and then grouping by repeated
type as xed e ects and tracks as a random e ect (all results8-bar segments. The rst annotation correlates well withdll
Greenhouse-Geisser corrected). The main e ects of annotatahe feature-based similarity matrices, which exhibit lamirast
and feature type were both signi carfz 92 142,850 3.44,0 D for the majority of the piece. The second annotation is gelhera
0.02, 2 D 0.068, 2 D 0.066 for annotator an( s, 123372 uncorrelated with the feature similarities, leading to thege
28.33pD 1.49 10 12 2D 0.159, 2 D 0.366 for feature type. score between the two. Note that this does not imply that one
The interaction e ect was also signi cang 26, 404.97)D 3.00, annotator was more “accurate” than the other, but it doegasg
pD 246 103 2D 517 103 2 D 0.058. There was that the di erences in the annotations can be attributed, etdt
a large e ect size for feature type and very small e ect sizes fdn part, to perceptual characteristics of the music in question
annotator and interaction. this case, Annotator 2 accounted for both instrumentation
Tukey's test for multiple comparisons revealed a signi cantand harmony, while Annotator 1 accounted only for
di erence between Annotators 3 and {z{ D 2.88,p D 0.032) harmony.
and a slight di erence between 2 and gj(D 2.52,p D 0.086). Figure 10illustrates a second example, SALAMI track 936:
Figure 8 (right) indicates that most of this di erence is likely Astor Piazzola- Tango Aspasionagahich produces L-measure
attributable to the tempo feature, which annotator 4 corteka of 0.46 and a relatively large D 0.45. The two annotators in
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FIGURE 7 | Feature correlation compared to L-measures on the SALAMLeft) and SPAM (Right) datasets.

FIGURE 8 | The mean feature correlation for each feature type and annator on the SPAM dataset. Error bars indicate the 95% con dene intervals estimated by
bootstrap sampling fi D 1,000). Left: results are grouped by annotator IDRight: results are grouped by feature type.

this example have again identi ed substantially di erent larg timbre, rhythm, and tempo. Chroma self-similarity matrices
scale structures, with the rst annotation correlating higwith  (Figures 9 10, bottom-left) tend to exhibit diagonal patterns
tempo (0.57) and rhythmic (0.40) similarity as compared torather than solid blocks of self-similar time intervals, whic
the second annotator (0.16 and 0.12, respectively). The decoare easier to match against the annotation-based meet ceatri
annotator identi ed repeating melodic and harmonic themes(right column). It may be possible to engineer locally stable
that persist across changes in instrumentation and rhythiisT harmony representations that would be more amenable to this
persistence explains the comparatively low correlation scfe  kind of correlation analysis, but doing so without supposing a
the tempo and rhythm features. The two annotators appear tpre-existing segmentation model is a non-trivial undertakand
disagree on the relative importance of rhythmic and instrunt@®  beyond the scope of the present experiment.
characteristics, compared to melodic and harmonic features
determining the structure of the piece.

In both of these examples, and as a general trend illustrated 8. EXPERIMENT 3: HIERARCHICAL
Figure 8 annotations that relied on solely on harmony producedAL GORITHMS
lower correlation scores than those which align with timiared
rhythm descriptors. This is likely a consequence of the dyicam This last experiment focuses on using the L-measure to compare
structure of harmony and chroma representations, whicheol hierarchical results estimated by automatic approaches with
rapidly compared to the more locally stationary descriptors othose annotated by music experts. Assuming that the L-measure
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FIGURE 9 | Feature correlation for SALAMI track #410Erik TruffazBetty, which achieves D 0.67, L-measure D 0.25. The two annotations encode different
hierarchical repetition structures, depicted in the meet ratrices in the right-most column. Annotator 1's hierarchys more highly correlated with the feature-based
similarities:z D (0.62,0.42,0.26, 0.48) for tempo, rhythm, chroma, and MFCCcompared to z D (0.03,0.07,0.07,0.04) for Annotator 2.

between human annotations de nes the upper limit in termsoverall track duration. This results in a hierarchy of vata

of performance for the automated hierarchical segmentationlepth, typically between 15 and 30 levels, where each level
task, we explore how the L-measure behaves when assesgiag be seen as splitting one segment from the previous level
this type of algorithms. We are particularly interested intbet into two. Because OLDA only estimates segment boundaries,
understanding how much room there is for improvement whensegment labels were estimated at each level by using the 2D-

designing new approaches to this task. Fourier Magnitude Coe cients methodNieto and Bello, 2014
which yields state-of-the-art results in terms of autornatt
6.1. Methods segment label prediction. The 2D-FMC method is set to idgntif

To the best of our knowledge, only two automatic methog<® Maximum of 7 unique labels per level of segmentation, as this

that estimate hierarchical segmentations have been puaish nZ:t?:gr;:%ss‘xix&lﬂgg:qu ?h%rsoéj:gﬁstgree?ﬁstnzizgltzIlzll-;?ien
with  open source implementations: Laplacian structural{?1 task of structural m ntr;lti n anditis a standard P E
decomposition icFee and Ellis, 201)aand Ordinal Linear ''c @Sk ofstructuralsegmentation, anditis a standardprado

Discriminant Analysis lficFee and Ellis, 201)bThe Laplacian tune the parameters according to thekeser and Sikora, 2010;

method generates hierarchies of depth 10, where each IayepIIetO and Jehan, 2013; Nieto and Bello,_3014
The standard approach to measuring the performance of

consists of C 1 unique segment labedécee and Ellis (20142) automatic algorithms is to compare the average scores dkrive
For each layer index, this method rst partitions the recardi 9 pare | 9 b N
from a sample of tracks, each of which has one “ground truth

Into a set of discontinuous clusters (segment labels), et t nnotation. However, as demonstrated in the previous sestion
estimates segment boundaries according to changes ineclus S T P
ere is still signi cant disagreement between annotatetsen

membership between successive time instants. Conseguen comes to hierarchical seamentation. so selecting a ainal
each layer can have arbitrarily many segments, but the nll]mb%mnotation to use as a ogi]nt of refe’rence wouldgbias tI?e
of unique segment labels is always xed. P

The OLDA method, as described bjcFee and Ellis (2014h) results of the_ evaluation. Instead, we compared the ou@put
operates by agglomerative clustering of time instants int(g)f each algorithm .to all annotations for a given ‘Tac'." V\."th
segments, resulting in a binary tree with time instants a th results presented in terms of the full empirical dlstrlb_utlon
leaves, and the entire recording at the root. Each laysrthis over scores rather than the mean score. We quantify the
tree had C 1 contiguous segments, and the tree is automatically
pruned based on the statistics of segment lengths and tH@ttp://isophonics.net/content/reference-annotations-ties

Frontiers in Psychology | www.frontiersin.org 13 August 2017 | Volume 8 | Article 1337



McFee et al. Evaluating Hierarchical Structure in Music Annotations

FIGURE 10 | Feature correlation for SALAMI track #936Astor PiazzolaTango Aspasionadqg which achieves D 0.45, L-measure D 0.46. Annotator 1 is highly
correlated with the features:z D (0.57,0.40,0.11, 0.25) for tempo, rhythm, chroma, and MFCCcompared to z D (0.16,0.12,0.13, 0.25) for Annotator 2.

di erence in distributions by the two-sample Kolmogorov- annotations can also be found in the depth-10 automatic
Smirnov statistic, which measures the maximum di erenceannotations.
between the empirical cumulative distributions: a smallueal The right column shows the total L-measure distribution
(near 0) indicates high similarity, a large value (near Higates (combining precision and recall). In both datasets, the Leipia
low similarity. For this experiment, the set of human annadas  method was signi cantly more similar to the inter-annotato
had a privileged interpretation (compared to the automaticdistribution than the OLDA-2DFMC method was, despite the
methods), so we reported L-precision, L-recall, and L-measumode at the bottom of the L-measure scale visibl&igure 11
separately. (right). The region of low performance can be attributed to an
Both algorithms (OLDA and Laplacian) were run on apparent weakness of the method on longer recordings (e.g.,
both datasets (SALAMI and SPAM) using the open-sourcSALAMI-478at 525 s, oISALAMI-108at 432 s) where it tends
implementations found in the Music Structure Analysisto over-emphasize short discontinuities and otherwise |l &fe
Framework, version 0.1.2-dewWigto and Bello, 2006 All  remainder of the track as belonging primarily to one component

algorithm parameters were left at their default values. This behavior can also be seen in the SALAMI distribution,
though such examples make up a smaller portion of the corpus,

6.2. Results and Discussion and therefore exert less in uence on the resulting distribat

The results of the automatic hierarchical segmentatioontigm The results of this experiment demonstrate a rather large

experiment are displayed iRigure 11 Both algorithms achieve gap between the distribution of inter-annotator agreement
larger average L-recall (center column) than L-precisiceft(I and algorithm-annotator agreement. In the examples presented
column), which suggests that the automated methods, whichere, and especially the Laplacian method, much of this
produce much deeper hierarchies than the reference annoistio gap can be attributed to low precision. Low precision may
have identi ed more detailed structures than were encodgd barise naturally from comparisons between deep and shallow
the human annotators. Notably, the Laplacian method acldevehierarchies. Because the reference annotations in bottASAL

a recall distribution quite close to that of the human anrtota. and SPAM have xed depth, this e ect is not observable in the
This indicates that the L-measure is robust to di erences ininter-annotator comparison distribution. This e ect suggest
hierarchical depth: structures encoded in the depth-2 humarnrade-o between precision and recall as a function of hierar
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FIGURE 11 | The distribution L-measure scores for inter-annotator agrement, OLDA-2DFMC, and Laplacian on the SALAM[Top row) and SPAM (Bottom row)
datasets. The left, middle, and right columns compare algdthm L-precision, L-recall, and L-measure to inter-annottor scores. For each algorithm, the two-sample
Kolmogorov-Smirnov test statisticK is computed against the inter-annotator distribution (sméerK is better).

depth. If a practitioner was interested in bounding hierarchyannotation for each track in the corpus. The evaluation désati
depth to optimize this trade-o , the L-measure would provide ain Section 6 represents a potentially viable alternative netho

means to do so. of evaluation, which seeks not to measure “agreement” again
human annotators, but rather to match the distribution of
7. GENERAL DISCUSSION agreemenbetweerhuman annotators. This approach could be

easily adapted to other tasks involving high degrees of 4inter

From the perspective of music informatics research, th@nnotator disagreement, such as chord recognition or awtiden
hierarchical evaluation technique described here opensaw n tagging.
possibilities for algorithm development. Most existing autiio While the L-measure resolves some problems with evaluating
segmentation methods, in one way or another, seek to optimizeéegmentations across dierent levels, it still shares some
the existing metrics for at boundary detection and segmentlimitations with previous label-based evaluation metrics.
label agreement. Boundary detection is often modeled as Motably, none of the existing methods can distinguish betwee
binary classi cation problem (boundary/not-boundary), @n adjacent repetitions of the same segment lalz) from a
labeling is often modeled as a clustering problem. The Lsingle segment spanning the same time interva). (This
measure suggests instead to treat both problems from thesults in an evaluation which is blind to boundaries betwee
perspective of similarity ranking, and could therefore beduge  similarly labeled segments, and therefore discards importa
de ne an objective function for a machine-learning approaoh t cues indicating repetition. Similarly, variation segmentsg-
hierarchical segmentation. (A, A) in SALAMI notation—are always treated as distinct,

As demonstrated in Section 4, the L-measure can reducand equally distinct as any other pair of dissimilar segments
bias in the evaluation due to super cial di erences between(A,B). While the L-measure itself does not present a solution
two hierarchical segmentations, which better exposes mgéuli  to these problems, its ability to support hierarchies of adiiyr
structural discrepancies. Still, there appears to be a camditte depth could facilitate solutions in the future. Speci callypeo
amount of inter-annotator disagreement in commonly usedcould augment an existing segmentation with additional dow
corpora. Disagreement is a pervasive problem in musitayers that distinguish among each instance of a label, ab th
informatics research, where practitioners typically eviluzn a, a decomposes int@l, a2 without losing the information
algorithm by comparing its output to a single “ground truth” that both segments ultimately receive the same label. &iyil
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