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ABSTRACT

We describe an artist recommendation system which inte-
grates several heterogeneous data sources to form a holistic
similarity space. Using social, semantic, and acoustic fea-
tures, we learn a low-dimensional feature transformation
which is optimized to reproduce human-derived measure-
ments of subjective similarity between artists. By produc-
ing low-dimensional representations of artists, our system
is suitable for visualization and recommendation tasks.

1. INTRODUCTION

A proper notion of similarity can dramatically impact per-
formance in a variety of music applications, such as search
and retrieval, content-based tagging engines, and song or
artist recommendation. When designing such a system,
practitioners must choose an appropriate measure of sim-
ilarity for the task at hand. Often, this involves selecting
among multiple heterogeneous feature types, which may
not be directly comparable, e.g., social network connec-
tivity and probabilistic models of keywords. Integration
of diverse features must be conducted carefully to ensure
that the resulting similarity measure sufficiently captures
the qualities desired for the application.

In music applications, the problem of selecting an opti-
mal similarity measure is exacerbated by subjectivity: peo-
ple may not consistently agree upon whether or to what
degree a pair of songs or artists are similar. Even more flex-
ible notions of similarity, such as ranking, may suffer from
the effects of inconsistency, which must be understood and
counteracted.

In this work, our goal is to construct artist-level similar-
ity measures, adhering to two key principles. First, a simi-
larity measure should integrate heterogeneous features in a
principled way, emphasizing relevant features while being
robust against irrelevant features. Second, instead of rely-
ing solely on features, the measure should learn from peo-
ple and be optimized for the task at hand, i.e., predicting
human perception of similarity. Using recently developed
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algorithms, we demonstrate how to learn optimal metrics
for subjective similarity while seamlessly integrating mul-
tiple feature modalities. We do not mean to imply that
there exists a fully consistent ground truth in musical sim-
ilarity. Rather, we seek to construct similarity measures
which are maximally consistent with human perception.

1.1 Related work

There has been a considerable amount of research devoted
to the topic of musical similarity, primarily in the realms
of playlist generation and recommendation [3,14,18]. The
present work is perhaps most similar to that of Slaney,
et al. [21], in which convex optimization techniques were
applied to learn metric embeddings optimized according
to side information. Our work differs in that we focus on
artist similarity, rather than classification, and we use direct
measurements of human perception to guide the optimiza-
tion.

Barrington, et al. applied multiple-kernel learning to a
classification task [4]. Our approach uses a different for-
mulation of multiple-kernel learning which allows greater
flexibility in assigning weights to the features and training
set, and produces a metric space instead of a linear separa-
tor.

Ellis, et al. and Berenzweig, et al. studied the issue of
consistency in human perception of artist similarity, and
evaluated several acoustic- and socially-driven similarity
measures against human survey data [5, 9]. Their work fo-
cused on the comparison of existing measures of similarity
(e.g., playlist co-occurrence), rather than learning an opti-
mal measure.

2. EMBEDDING ALGORITHMS

Our approach to the artist recommendation task is to em-
bed each artist from a set X into a Euclidean space so that
distances correspond to human perception of dissimilarity.
Although it has been documented that notions of similar-
ity between artists can vary dramatically from person to
person, rankings of similarity between pairs of artists are
comparatively more robust [9].

One simple ranking method involves comparisons of
artists j and k relative to a fixed reference artist i. This
yields similarity triplets (i, j, k), indicating that the pair
(i, j) are more similar to each-other than the pair (i, k).
Data of this variety are becoming increasingly common
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Figure 1. Similarity triplets can be interpreted as a directed
graph over pairs of artists: an edge (i, j)→ (i, k) indicates
that i and j are more similar than i and k. (a) The graph
representation of two triplets: (Bon Jovi, Aerosmith, 112)
and (Bon Jovi, Bryan Adams, 112). (b) An example of a
1-dimensional embedding that satisfies these triplets.

for general ranking and human perception modeling tasks,
such as the Tag-a-Tune bonus round [12].

In this setting, we seek a Euclidean embedding function
g : X → RD such that each given triplet (i, j, k) yields

‖g(i)− g(j)‖2 + 1 < ‖g(i)− g(k)‖2, (1)

where the unit margin is enforced for numerical stability.
In other words, distance in the embedding space corre-
sponds to perceived similarity. This framework eliminates
the need to normalize quantitative similarity scores (as in
multi-dimensional scaling), and does not over-simplify the
description language to a binary problem (e.g., same ver-
sus different).

Several algorithms have been proposed to solve embed-
ding problems in this framework [1, 16, 20]. Here, we
briefly summarize the partial order embedding (POE) al-
gorithm of [16].

2.1 Partial order constraints

A collection of similarity triplets can be equivalently repre-
sented as a directed graph in which each vertex represents
a pair of artists, and a directed edge indicates a compar-
ison of pairwise similarities (see Figure 1). Interpreting
the similarity triplets as a graph allows us to simplify the
embedding problem by pruning edges which may be re-
dundant or inconsistent.

If the triplets give rise to a directed acyclic graph (DAG),
this defines a partial order over distances, which implies
the existence of some similarity space which is consistent
with the measured triplets. If the graph contains cycles,
then no similarity function can satisfy all of the triplets,
and we say that the triplets are inconsistent. In practice,
there are always inconsistencies in human similarity per-
ception, but the graph representation provides a direct way
to locate and quantify these inconsistencies. Section 4.1
describes an experiment and methodology to analyze in-
consistencies in a collection of similarity measurements.

2.2 Multi-kernel embedding

Since our eventual goal is to recommend similar artists
when presented with a previously unseen artist, we will
need to provide a means to map unseen artists into the em-
bedding space after training, without requiring any simi-
larity measurements for the new artist. POE achieves this
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Figure 2. The embedding procedure first maps a point x
intom different non-linear spaces (encoded bym different
kernel matrices), and then learns a set of projections Np

(p = 1 . . .m) which form the embedding space.

by restricting the choice of embedding functions to lin-
ear projections from a given feature space. This readily
generalizes to non-linear embeddings through the use of
kernel functions [19]. Artists are first mapped into a high-
dimensional inner-product space by a feature transform de-
fined by a kernel function k(· , ·). POE then learns a pro-
jection from this feature space into a low-dimensional Eu-
clidean space. This leads to the parameterization

g(x) = NKx,

where N is a linear projection matrix, and Kx is the vector
formed by evaluating a kernel function k(x, i) against all
points i in the training set.

Since formulating the problem in terms ofN would lead
to a non-convex optimization problem — with perhaps in-
finitely many parameters — POE instead optimizes over a
positive semidefinite matrix W = NTN � 0 [6]. N may
be infinite-dimensional (as is the case in Gaussian kernels),
but an approximation to N can be recovered from W by
spectral decomposition:

NTN = W = V ΛV T = V Λ1/2Λ1/2V T

=
(

Λ1/2V T
)T (

Λ1/2V T
)

= ÑTÑ
(2)

where V and Λ contain the eigenvectors and eigenvalues
of W .

In MIR tasks, it is becoming common to combine data
descriptions from multiple feature modalities, e.g., social
tags and spectral features [4]. POE accomplishes this by
learning a separate transformationNp for each ofm kernel
matricesKp (p = 1 . . .m), and concatenating the resulting
vectors (see Figure 2). This formulation allows (squared)
distance computations in the embedding space to be de-
composed as

d(i, j) =
m∑
p=1

(
Kp
i −K

p
j

)
TW p

(
Kp
i −K

p
j

)
. (3)

The multi-kernel POE algorithm is given as Algorithm 1.
The objective function has three components: the first term,∑
i,j d(i, j) maximizes the variance of the embedded points,

which has been demonstrated to be effective for reducing
dimensionality in manifold data [23]. In the present appli-
cation, variance maximization diminishes erroneous rec-
ommendations by pushing all artists far away from each-



other, except where prevented from doing so by similarity
ordering constraints.

The second term, −β
∑
C ξijk, incurs hinge-loss penal-

ties for violations of similarity constraints, scaled accord-
ing to a free parameter β. The last term,−γ

∑
Tr (W pKp),

regularizes the solution and enforces sparsity in the solu-
tion, again scaled by a free parameter γ. Parameters β and
γ are tuned by cross-validation, similar to the C parameter
in support vector machines [7].

There are four types of constraints in Algorithm 1. The
first, d(i, j) ≤ ∆C , bounds the diameter of the embedding
to resolve scale invariance. 1 The second set of constraints,
d(i, j) + 1 − ξijk ≤ d(i, k) enforces consistency between
the learned distances and similarity triplets in the training
set, as in Equation 1. The slack terms ξijk ≥ 0 allow
similarity constraints to be violated, provided it yields an
overall increase in the value of the objective function. Fi-
nally, W p � 0 forces each W p to be positive semidefinite,
so that the Np matrices can be recovered as in Equation 2.

The optimal solution
(
W 1,W 2, . . . ,Wm

)
is computed

by gradient ascent, and then each matrix is decomposed to
produce the embedding function

g(x) = (NpKp
x)mp=1 , (4)

where (NpKp
x)mp=1 denotes the concatenation over all m

vectors NpKp
x .

Algorithm 1 Multi-kernel partial order embed-
ding [16]. d(i, j) is defined as in Equation 3, and(
W 1,W 2, . . . ,Wm

)
are optimized by gradient ascent.

Input: kernel matrices K1,K2, . . . ,Km,
triplets C = {(i, j, k) : (i, j) more similar than (i, k)}
Output: matrices W 1,W 2, . . . ,Wm � 0.

max
Wp,ξ

∑
i,j

d(i, j)− β
∑
C
ξijk − γ

∑
p

Tr (W pKp)

s. t.
∀i, j∈X d(i, j) ≤ ∆C

∀(i, j, k)∈C d(i, j) + 1− ξijk ≤ d(i, k)
ξijk ≥ 0

∀p∈1, 2, . . . ,m W p � 0

3. DATA

To evaluate our system, we designed experiments around
the aset400 data set of Ellis, et al [9]. The data consists of
412 popular artists, and similarity triplets collected with a
web survey in 2002. We augmented the data set with sev-
eral types of features, both human-derived (tags and text),
and purely content-driven, as described below.

3.1 Text features

Our text-based features were collected from Last.FM be-
tween January and May of 2009. To standardize the list

1 ∆C is computed from the structure of the similarity triplets graph,
and is not a free parameter. See [16] for details.

of artist names, we used the search artists method of the
Echo Nest API [17].

We then collected for each artist two types of textual
features from Last.FM: biography summaries and the top
100 tags [11]. The tags were filtered by a small set of regu-
lar expressions to resolve common spelling variations. For
example, r-n-b, r&b, r-and-b were all mapped to rnb, and
the merged tag rnb received a score equal to the sum of
scores of its constituent tags.

The tags and biographies were filtered by stop-word
removal and stemming, resulting in dictionaries of 7737
unique tag words, and 16753 biography words. Each artist
was summarized as two bags of words (one for tags and
one for biographies), which were then re-weighted by TF-
IDF. Finally, to compare similarity between artists, we con-
structed kernels K tag and Kbio defined by the cosine simi-
larity between word vectors.

3.2 Acoustic features

For each artist, we selected between one and ten songs at
random (depending on availability), with an average of 3.8
songs per artist. From these songs, we extracted a va-
riety of content-based features. Since content-based fea-
tures relate to songs and not directly to artists, we do not
expect them to perform as well the textual features de-
scribed above. We are primarily interested in integrating
heterogeneous features, and quantifying the improvements
achieved by optimizing for artist similarity.

3.2.1 MFCC

Mel-frequency cepstral coefficients (MFCCs) have been
demonstrated to capture timbral or textural qualities, and
perform well in a variety of MIR applications [13, 15].
For each song, we compute the first 13 MFCCs for up
to 10000 half-overlapping short-time segments (23 msec),
along with the first and second instantaneous derivatives.
This results in a collection of 39-dimensional delta-MFCC
vectors for each song.

Each artist was summarized by modeling the distribu-
tion of delta-MFCC vectors in all songs belonging to that
artist, using a Gaussian mixture model (GMM) of 8 com-
ponents and diagonal covariances. Then, to compare mod-
els between artists, we construct a probability product ker-
nel (PPK) between the GMMs:

KMFCC
ij =

∫ √
p
(
x; θMFCC

i

)
p
(
x; θMFCC

j

)
dx,

where θMFCC
i and θMFCC

j are the GMM model parameters
for artists i and j [10]. Unlike kernels derived from Kull-
back Leibler divergence, PPK can be computed in closed-
form for mixtures of Gaussians.

3.2.2 Chroma

For each song in our database, we modeled the distribution
of spectral energy present in frequencies corresponding to
the chromatic scale, resulting in a 12-dimensional vector
for every 250 msec of audio. Although chroma features
are not specifically suited to the artist similarity task, they



have been shown to work well in other applications when
combined with other features, such as MFCCs [8]. We
summarized each artist by collecting chroma features for
each of the artist’s songs, which were then modeled with
a single full-covariance Gaussian distribution

(
θch
)
. From

these chroma models, we construct an artist similarity ker-
nel 2 from symmetrized KL-divergence:

DKL(i, j) =
∫
p
(
x; θch

i

)
log

p
(
x; θch

i

)
p
(
x; θch

j

) dx
Kch
ij = exp

(
−DKL(i, j) +DKL(j, i)

µ

)
,

where µ is the mean KL-divergence over all pairs i, j. Since
we are not using mixture models here, this can be com-
puted in closed form.

3.2.3 Content-based auto-tagging

In contrast to the low-level acoustic features, we also eval-
uate high-level conceptual features which were automat-
ically synthesized from audio content. To achieve this,
we computed semantic multinomial distributions using the
system described in [22]. For each song, the auto-tagger
examines the acoustic content and produces a multinomial
distribution over a vocabulary V of 149 words, e.g., mel-
low, dance pop, horn section, etc. The semantic model
parameters θSM

i for an artist i were computed by averaging
the parameters of each of that artist’s song-level models.
(We also tested a version using the point-wise maximum
of song-level models, but it yielded little quantitative dif-
ference.) To compare models between artists, we construct
a semantic multinomial kernel using the multinomial PPK:

KSM
ij =

(∑
x∈V

√
p
(
x; θSM

i

)
p
(
x; θSM

j

))s
.

This is equivalent to a homogeneous polynomial kernel of
degree s over the model parameter vectors. For our exper-
iments, setting s = 75 yielded reasonable results.

4. EXPERIMENTS

4.1 Quantifying inconsistency

The aset400 data set consists of 412 popular artists, and
similarity triplets gathered from a web-based survey. In
the survey, an informant was presented with a query artist
i, and was asked to select, from a list of ten artists, the re-
sponse j most similar to the query artist. Then, for each of
the remaining responses k which were not selected, mea-
surements (i, j, k) were recorded. Note that in a list of ten
potential responses, there may be several “good” choices.
Being forced to choose a single best response therefore re-
sults in numerous inconsistencies in the triplets, which we
set out to quantify.

The survey data contains 98964 triplets, generated from
10997 queries to 713 human informants. We analyze the
filtered version of the data, which has been reduced to

2 Symmetrized KL-divergence does not generally produce a PSD ker-
nel matrix, but the POE algorithm is still correct for indefinite kernels.
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Figure 3. Quantitative summary of consistency within the
aset400 filtered triplets. Directly inconsistent triplets are
those where both (i, j, k) and (i, k, j) are present.

16385 measurements wherein the informant was likely to
be familiar with the artists in question. Although this greatly
reduces the amount of noise present in the full set, the fil-
tered set still contains numerous inconsistencies.

Consistency in the similarity measurements can be quan-
tified by analyzing their graph representation. As a first
step, we filter out all measurements (i, j, k) if (i, k, j) is
also present, i.e., those artist-pairs which the informants
could not consistently rank. We refer to these triplets as di-
rectly inconsistent. Removing these triplets decreases the
number of edges by 18.1% to 13420.

However, simply removing all length-2 cycles from the
graph does not ensure consistency: all cycles must be re-
moved. Finding a maximum acyclic subgraph is NP-hard,
but we can find an approximate solution by Algorithm 2.
Since the algorithm is randomized, we repeat it several
times to compute an estimate of the average maximal acyclic
subgraph. With 10 trials, we find consistent subsets of av-
erage size 8975.2.

To evaluate the stability of these subgraphs, we count
the number of edges present in all solutions, i.e., those
measurements which are never pruned. Over 10 trials,
8598 edges (95.8%) were common to all solutions, leaving
4.2% variation across trials. Our results are summarized in
Figure 3.

Algorithm 2 Approximate maximum acyclic subgraph
Input: Directed graph G = (V,E)
Output: Acyclic graph G′

E′ ← ∅
for each (u, v) ∈ E in random order do

if E′ ∪ {(u, v)} is acyclic then
E′ ← E′ ∪ {(u, v)}

end if
end for
G′ ← (V,E′)

4.2 Order prediction

The goal of our system is to recommend similar artists in
response to a query. To evaluate the system, we test its abil-
ity to predict for artists i, j and k (where i is unseen), the
ordering of similarity between (i, j) and (i, k), i.e., which
of the artists j or k is more similar to artist i.



4.2.1 Experimental Setup

We split the data for 10-fold cross validation, resulting in
370 training and 42 test artists for each fold. All directly
inconsistent triplets were removed from both training and
test sets, as described in Section 4.1. For each training
set, we filtered the triplets to produce a maximal acyclic
subgraph, retaining only those measurements which were
included in all of 10 trials of Algorithm 2. The acyclic
subgraphs were then pruned down to their transitive re-
ductions, i.e., minimal graphs with equivalent transitivity
properties [2]. This effectively removes the measurements
which could be deduced from others, thereby reducing the
complexity of the embedding problem with no loss of qual-
ity. The resulting training sets have an average of 6252.7
similarity measurements. The corresponding graphs have
average diameter 30.2, indicating the longest contiguous
chain of comparisons which can be followed in the train-
ing sets.

For each test set, we included only those triplets (i, j, k)
where i is in the test set and j, k are in the training set, re-
sulting in an average of 1149.6 triplets per test set. Aside
from pruning directly inconsistent triplets, no further pro-
cessing was done to enforce consistency in the test set.
Therefore, we cannot expect 100% prediction accuracy on
the test set. As shown in Figure 3, we can expect a lower-
bound on the achievable accuracy of 67% (8975.2/13420).
This is consistent with the upper-bound of 85% constructed
in [9].

4.2.2 Results

We tested the embedding method on each of the kernels
described in Sections 3.1 and 3.2 independently, and then
combined. The free parameters β and γ were tuned by
sweeping over β ∈ [100, 10000] and γ ∈ [100, 1000]. Af-
ter learning, performance was evaluated by counting the
number of test-triplets correctly predicted by Euclidean dis-
tance in the embedding space.

Figure 5 illustrates two regions of an embedding pro-
duced by the combination of tags and biography features,
including several query points which were mapped in after
learning. The nearest neighbors of the query points pro-
vide reasonable recommendations, and the neighborhoods
are generally consistent. Moreover, neighborhoods which
are largely dissimilar (e.g., female vocals and punk) have
been pushed to opposite extremes of the space by the vari-
ance maximization objective.

For comparison purposes, we also evaluated the predic-
tion accuracy of distance-based ranking in the native fea-
ture spaces. Native multi-kernel results were computed by
concatenating the kernels together to form feature vectors,
which is equivalent to setting each Np = I . This pro-
vides an intuitive and consistent way to compute distances
to neighbors in one or more feature spaces.

Figure 4 lists the quantitative results of our experiments.
In all cases, prediction accuracy improves significantly af-
ter learning the optimal embedding. Moreover, the im-
provement is more significant than it may at first seem,
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Figure 4. Triplet prediction accuracy for each feature and
combinations, before and after learning.

since the maximum achievable performance is less than
100% due to inconsistencies in the test set.

It is not surprising that textual features give the best per-
formance, and there are two main factors which explain
this effect. First, only textual features were attributed di-
rectly to artists and not songs. Second, textual features de-
rive from natural language, which is well-suited to describ-
ing subtle differences. We achieve significant improve-
ments by optimizing the similarity metric, with gains of
7% for tags and 19% for biographies. Moreover, combin-
ing both types of textual features results in better perfor-
mance than either feature on its own.

As expected, embeddings based on acoustic features
perform significantly worse than those derived from text.
We believe this is primarily due to the fact that acoustic
features relate directly to songs, and variation across an
artist’s songs introduces noise to the artist-level models.
Note that combining a kernel which performs poorly (e.g.,
chroma) does not significantly degrade the overall perfor-
mance, indicating that the algorithm correctly selects the
most relevant features available.

4.2.3 Comparison

Our results can be directly compared to the “unweighted
agreement” score measurements of [9]. Particularly of in-
terest is the comparison of our biography-based embed-
ding, which is analogous to the text-based measures in [9].
Our biography features natively achieve 51.4% accuracy,
compared to 57.4% for the web documents in [9]. How-
ever, the optimized embedding improves prediction accu-
racy to 70.5%.

5. CONCLUSION

In this paper, we demonstrated a method for optimizing
multi-modal musical similarity measures to match human
perception data. We believe that the techniques illustrated
here could be applicable in other subjective similarity tasks,
particularly at the song level, and this will be the focus of
future work.
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