
LARGE-SCALE MUSIC SIMILARITY SEARCH WITH SPATIAL TREES

Brian McFee
Computer Science and Engineering
University of California, San Diego

Gert Lanckriet
Electrical and Computer Engineering
University of California, San Diego

ABSTRACT

Many music information retrieval tasks require finding the
nearest neighbors of a query item in a high-dimensional
space. However, the complexity of computing nearest neigh-
bors grows linearly with size of the database, making exact re-
trieval impractical for large databases. We investigate modern
variants of the classical KD-tree algorithm, which efficiently
index high-dimensional data by recursive spatial partitioning.
Experiments on the Million Song Dataset demonstrate that
content-based similarity search can be significantly acceler-
ated by the use of spatial partitioning structures.

1. INTRODUCTION

Nearest neighbor computations lie at the heart of many
content-based approaches to music information retrieval prob-
lems, such as playlist generation [4, 14], classification and
annotation [12, 18] and recommendation [15]. Typically,
each item (e.g., song, clip, or artist) is represented as a point
in some high-dimensional space, e.g., Rd equipped with Eu-
clidean distance or Gaussian mixture models equipped with
Kullback-Leibler divergence.

For large music databases, nearest neighbor techniques
face an obvious limitation: computing the distance from a
query point to each element of the database becomes pro-
hibitively expensive. However, for many tasks, approximate
nearest neighbors may suffice. This observation has moti-
vated the development of general-purpose data structures
which exploit metric structure to locate neighbors of a query
in sub-linear time [1, 9, 10].

In this work, we investigate the efficiency and accuracy
of several modern variants of KD-trees [1] for answering
nearest neighbor queries for musical content. As we will
demonstrate, these spatial trees are simple to construct, and
can provide substantial improvements in retrieval time while
maintaining satisfactory performance.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

2. RELATED WORK

Content-based similarity search has received a considerable
amount of attention in recent years, but due to the obvious
data collection barriers, relatively little of it has focused on
retrieval in large-scale collections.

Cai, et al. [4] developed an efficient query-by-example
audio retrieval system by applying locality sensitive hashing
(LSH) [9] to a vector space model of audio content. Although
LSH provides strong theoretical guarantees on retrieval per-
formance in sub-linear time, realizing those guarantees in
practice can be challenging. Several parameters must be care-
fully tuned — the number of bins in each hash, the number
of hashes, the ratio of near and far distances, and collision
probabilities — and the resulting index structure can become
quite large due to the multiple hashing of each data point.
Cai, et al.’s implementation scales to upwards of 105 audio
clips, but since their focus was on playlist generation, they
did not report the accuracy of nearest neighbor recall.

Schnitzer, et al. developed a filter-and-refine system to
quickly approximate the Kullback-Leibler (KL) divergence
between timbre models [17]. Each song was summarized by
a multivariate Gaussian distribution over MFCC vectors, and
then mapped into a low-dimensional Euclidean vector space
via the FastMap algorithm [10], so that Euclidean distance
approximates the symmetrized KL divergence between song
models. To retrieve nearest neighbors for a query song, the
approximate distances are computed from the query to each
point in the database by a linear scan (the filter step). The
closest points are then refined by computing the full KL
divergence to the query. This approach exploits the fact that
low-dimensional Euclidean distances are much cheaper to
compute than KL-divergence, and depending on the size of
the filter set, can produce highly accurate results. However,
since the filter step computes distance to the entire database,
it requires O(n) work, and performance may degrade if the
database is too large to fit in memory.

3. SPATIAL TREES

Spatial trees are a family of data structures which recursively
bisect a data set X ⊂ Rd of n points in order to facilitate
efficient (approximate) nearest neighbor retrieval [1,19]. The
recursive partitioning of X results in a binary tree, where

Figure 1. Spatial partition trees recursively split a data set
X ⊂ Rd by projecting onto a direction w ∈ Rd and splitting
at the median b (dashed line), forming two disjoint subsets
X` and Xr.

Algorithm 1 Spatial partition tree
Input: data X ⊂ Rd, maximum tree depth δ
Output: balanced binary tree t over X

PARTITION(X , δ)
1: if δ = 0 then
2: return X (leaf set)
3: else
4: wt ← split(X) {find a split direction}
5: bt ← median

({
wT
t x | x ∈ X

})
6: X` ←

{
x | wT

t x ≤ bt, x ∈ X
}

7: Xr ←
{
x | wT

t x > bt, x ∈ X
}

8: t` ← PARTITION(X`, δ − 1)
9: tr ← PARTITION(Xr, δ − 1)

10: return t = (wt, bt, t`, tr)

each node t corresponds to a subset of the data Xt ⊆ X
(Figure 1). At the root of the tree lies the entire set X , and
each node t defines a subset of its parent.

A generic algorithm to construct partition trees is listed as
Algorithm 1. The set X ⊂ Rd is projected onto a direction
wt ∈ Rd, and split at the median bt into subsets X` and Xr:
splitting at the median ensures that the tree remains balanced.
This process is then repeated recursively on each subset, until
a specified tree depth δ is reached.

Spatial trees offer several appealing properties. They are
simple to implement, and require minimal parameter-tuning:
specifically, only the maximum tree depth δ, and the rule for
generating split directions. Moreover, they are efficient to
construct and use for retrieval. While originally developed
for use in metric spaces, the framework has been recently
extended to support general Bregman divergences (including,
e.g., KL-divergence) [5]. However, for the remainder of
this article, we will focus on building trees for vector space
models (Rd with Euclidean distance).

In order for Algorithm 1 to be fully specified, we must
provide a function split(X) which determines the split di-
rection w. Several splitting rules have been proposed in the

literature, and our experiments will cover the four described
by Verma, et al. [20]: maximum variance KD, principal
direction (PCA), 2-means, and random projection.

3.1 Maximum variance KD-tree

The standard KD-tree (k-dimensional tree) chooses w by cy-
cling through the standard basis vectors ei (i ∈ {1, 2, . . . , d}),
so that at level j in the tree, the split direction is w = ei+1

with i = j mod d [1]. The standard KD-tree can be effec-
tive for low-dimensional data, but it is known to perform
poorly in high dimensions [16, 20]. Note also that if n < 2d,
there will not be enough data to split along every coordinate,
so some (possibly informative) features may never be used
by the data structure.

A common fix to this problem is to choose w as the coor-
dinate which maximally spreads the data [20]:

splitKD(X) = argmax
ei

∑
x∈X

(
eTi (x− µ)

)2
, (1)

where µ is the sample mean vector of X . Intuitively, this
split rule picks the coordinate which provides the greatest
reduction in variance (increase in concentration).

The maximum variance coordinate can be computed with
a single pass over X by maintaining a running estimate of the
mean vector and coordinate-wise variance, so the complexity
of computing splitKD(X) is O(dn).

3.2 PCA-tree

The KD split rule (Eqn. (1)) is limited to axis-parallel direc-
tions w. The principal direction (or principal components
analysis, PCA) rule generalizes this to choose the direction
w ∈ Rd which maximizes the variance, i.e., the leading
eigenvector v of the sample covariance matrix Σ̂:

splitPCA(X) = argmax
v

vTΣ̂v s. t. ‖v‖2 = 1. (2)

By using the full covariance matrix to choose the split direc-
tion, the PCA rule may be more effective than KD-tree at
reducing the variance at each split in the tree.

Σ̂ can be estimated from a single pass over X , so (assum-
ing n > d) the time complexity of splitPCA is O(d2n).

3.3 2-means

Unlike the KD and PCA rules, which try to maximally re-
duce variance with each split, the 2-means rule produces
splits which attempt preserve cluster structure. This is ac-
complished by running the k-means algorithm on X with
k = 2, and defining w to be the direction spanned by the
cluster centroids c1, c2 ∈ Rd:

split2M(X) = c1 − c2. (3)

While this general strategy performs well in practice [13],
it can be costly to compute a full k-means solution. In our
experiments, we instead use an online k-means variant which
runs in O(dn) time [3].

3.4 Random projection

The final splitting rule we will consider is to simply take a
direction uniformly at random from the unit sphere Sd−1:

splitRP(X) ∼U Sd−1, (4)

which can equivalently be computed by normalizing a sample
from the multivariate Gaussian distribution N (0, Id). The
random projection rule is simple to compute and adapts to
the intrinsic dimensionality of the data X [8].

In practice, the performance of random projection trees
can be improved by independently sampling m directions
wi ∼ Sd−1, and returning the wi which maximizes the
decrease in data diameter after splitting [20]. Since a full
diameter computation would take O(dn2) time, we instead
return the direction which maximizes the projected diameter:

argmax
wi

max
x1,x2∈X

wT
i x1 − wT

i x2. (5)

This can be computed in a single pass over X by tracking the
maximum and minimum of wT

i x in parallel for all wi, so the
time complexity of splitRP is O(mdn). Typically, m ≤ d,
so splitRP is comparable in complexity to splitPCA.

3.5 Spill trees

The main drawback of partition trees is that points near the
decision boundary become isolated from their neighbors
across the partition. Because data concentrates near the
mean after (random) projection [8], hard partitioning can
have detrimental effects on nearest neighbor recall for a large
percentage of queries.

Spill trees remedy this problem by allowing overlap be-
tween the left and right subtrees [13]. If a point lies close
to the median, then it will be added to both subtrees, thus
reducing the chance that it becomes isolated from its neigh-
bors (Figure 2). This is accomplished by maintaining two
decision boundaries b`t and brt . If wT

t x > brt , then x is added
to the right tree, and if wT

t x ≤ b`t , it is added to the left. The
gap between b`t and brt controls the amount of data which
spills across the split.

The algorithm to construct a spill tree is listed as Algo-
rithm 2. The algorithm requires a spill threshold τ ∈ [0, 1/2):
rather than splitting at the median (so that a set of n items
is split into subsets of size roughly n/2), the data is split at
the (1/2 + τ)-quantile, so that each subset has size roughly
n(1/2 + τ). Note that when τ = 0, the thresholds coin-
cide (b`t = brt), and the algorithm simplifies to Algorithm 1.
Partition trees, therefore, correspond to the special case of
τ = 0.

3.6 Retrieval algorithm and analysis

Once a spill tree has been constructed, approximate near-
est neighbors can be recovered efficiently by the defeatist
search method [13], which restricts the search to only the

Figure 2. Spill trees recursively split data like partition trees,
but the subsets are allowed to overlap. Points in the shaded
region are propagated to both subtrees.

Algorithm 2 Spill tree
Input: data X ⊂ Rd, depth δ, threshold τ ∈ [0, 1/2)
Output: τ -spill tree t over X

SPILL(X , δ, τ)
1: if δ = 0 then
2: return X (leaf set)
3: else
4: wt ← split(X)
5: b`t ← quantile

(
1/2 + τ,

{
wT
t x | x ∈ X

})
6: brt ← quantile

(
1/2− τ,

{
wT
t x | x ∈ X

})
7: X` ←

{
x | wT

t x ≤ b`t, x ∈ X
}

8: Xr ←
{
x | wT

t x > brt , x ∈ X
}

9: t` ← SPILL(X`, δ − 1, τ)
10: tr ← SPILL(Xr, δ − 1, τ)
11: return t = (wt, b

`
t, b

r
t , t`, tr)

leaf sets which contain the query. For a novel query q ∈ Rd
(i.e., a previously unseen point), these sets can be found by
Algorithm 3.

The total time required to retrieve k neighbors for a novel
query q can be computed as follows. First, note that for a spill
tree with threshold τ , each split reduces the size of the set
by a factor of (1/2 + τ), so the leaf sets of a depth-δ tree are
exponentially small in δ: n(1/2 + τ)

δ. Note that δ ≤ log n,
and is typically chosen so that the leaf set size lies in some
reasonable range (e.g., between 100 and 1000 items).

Next, observe that in general, Algorithm 3 may map the
query q to some h distinct leaves, so the total size of the
retrieval set is at most n′ = hn(1/2+ τ)δ (although it may be
considerably smaller if the sets overlap). For h leaves, there
are at most h paths of length δ to the root of the tree, and
each step requires O(d) work to compute wT

t q, so the total
time taken by Algorithm 3 is

TRETRIEVE ∈ O
(
h
(
dδ + n(1/2 + τ)δ

))
.

Finally, once the retrieval set has been constructed, the k
closest points can be found in time O(dn′ log k) by using a
k-bounded priority queue [7]. The total time to retrieve k

Algorithm 3 Spill tree retrieval
Input: query q, tree t
Output: Retrieval set Xq

RETRIEVE(q, t)
1: if t is a leaf then
2: return Xt {all items contained in the leaf}
3: else
4: Xq ← ∅
5: if wT

t q ≤ b`t then
6: Xq ← Xq ∪ RETRIEVE(q, t`)
7: if wT

t q > brt then
8: Xq ← Xq ∪ RETRIEVE(q, tr)
9: return Xq

approximate nearest neighbors for the query q is therefore

TkNN ∈ O
(
hd
(
δ + n(1/2 + τ)δ log k

))
.

Intuitively, for larger values of τ , more data is spread
throughout the tree, so the leaf sets become larger and re-
trieval becomes slower. Similarly, larger values of τ will
result in larger values of h as queries will map to more leaves.
However, as we will show experimentally, this effect is gen-
erally mild even for relatively large values of τ .

In the special case of partition trees (τ = 0), each query
maps to exactly h = 1 leaf, so the retrieval time simplifies to
O(d(δ + n/2δ log k)).

4. EXPERIMENTS

Our song data was taken from the Million Song Dataset
(MSD) [2]. Before describing the tree evaluation experi-
ments, we will briefly summarize the process of constructing
the underlying acoustic feature representation.

4.1 Audio representation

The audio content representation was developed on the 1%
Million Song Subset (MSS), and is similar to the model pro-
posed in [15]. From each MSS song, we extracted the time
series of Echo Nest timbre descriptors (ENTs). This results in
a sample of approximately 8.5 million 12-dimensional ENTs,
which were normalized by z-scoring according to the esti-
mated mean and variance of the sample, randomly permuted,
and then clustered by online k-means to yield 512 acoustic
codewords. Each song was summarized by quantizing each
of its (normalized) ENTs and counting the frequency of each
codeword, resulting in a 512-dimensional histogram vector.
Each codeword histogram was mapped into a probability
product kernel (PPK) space [11] by square-rooting its entries,
which has been demonstrated to be effective on similar audio
representations [15]. Finally, we appended the song’s tempo,
loudness, and key confidence, resulting in a vector vi ∈ R515

for each song xi.

Next, we trained an optimized similarity metric over audio
descriptors. First, we computed target similarity for each
pair of MSS artists by the Jaccard index between their user
sets in a sample of Last.fm 1 collaborative filter data [6,
chapter 3]. Tracks by artists with fewer than 30 listeners
were discarded. Next, all remaining artists were partitioned
into a training (80%) and validation (20%) set, and for each
artist, we computed its top 10 most similar training artists.

Having constructed a training and validation set, the dis-
tance metric was optimized by applying the metric learning
to rank (MLR) algorithm on the training set of 4455 songs,
and tuning parameters C ∈ {105, 106, . . . , 109} and ∆ ∈
{AUC, MRR, MAP, Prec@10} to maximize AUC score on
the validation set of 1110 songs. Finally, the resulting metric
W was factored by PCA (retaining 95% spectral mass) to
yield a linear projection L ∈ R222×515.

The projection matrix L was then applied to each vi in
MSD. As a result, each MSD song was mapped into R222

such that Euclidean distance is optimized by MLR to retrieve
songs by similar artists.

4.2 Representation evaluation

To verify that the optimized vector quantization (VQ) song
representation carries musically relevant information, we
performed a small-scale experiment to evaluate its predic-
tive power for semantic annotation. We randomly selected
one song from each of 4643 distinct artists. (Artists were
restricted to be disjoint from MSS to avoid contamination.)
Each song was represented by the optimized 222-dimensional
VQ representation, and as ground truth annotations, we ap-
plied the corresponding artist’s terms from the top-300 terms
provided with MSD, so that each song xi has a binary anno-
tation vector yi ∈ {0, 1}300. For a baseline comparison, we
adapt the representation used by Schnitzer, et al. [17], and
for each song, we fit a full-covariance Gaussian distribution
over its ENT features.

The set was then randomly split 10 times into 80%-training
and 20%-test sets. Following the procedure described by
Kim, et al. [12], each test song was annotated by threshold-
ing the average annotation vector of its k nearest training
neighbors as determined by Euclidean distance on VQ repre-
sentations, and by KL-divergence on Gaussians. Varying the
decision threshold yields a trade-off between precision and
recall. In our experiments, the threshold was varied between
0.1 and 0.9.

Figure 3 displays the precision-recall curves averaged
across all 300 terms and training/test splits for several values
of k. At small values of k, the VQ representation achieves
significantly higher performance than the Gaussian represen-
tation. We note that this evaluation is by no means conclusive,
and is merely meant to demonstrate that the underlying space
is musically relevant.

1 http://last.fm

0 0.2 0.4
0

0.05

0.1

0.15

0.2

k=5

Recall

P
r
e
c
i
s
i
o
n

0 0.2 0.4
0

0.05

0.1

0.15

0.2

k=15

Recall

P
r
e
c
i
s
i
o
n

0 0.2 0.4
0

0.05

0.1

0.15

0.2

k=30

Recall

P
r
e
c
i
s
i
o
n

0 0.2 0.4
0

0.05

0.1

0.15

0.2

Recall

P
r
e
c
i
s
i
o
n

k=100

VQ KL

Figure 3. Mean precision-recall for k-nearest neighbor an-
notation with VQ and Gaussian (KL) representations.

4.3 Tree evaluation

To test the accuracy of the different spatial tree algorithms,
we partitioned the MSD data into 890205 training songs X
and 109795 test songs X ′. Using the optimized VQ repre-
sentations on X , we constructed trees with each of the four
splitting rules (PCA, KD, 2-means, and random projection),
varying both the maximum depth δ ∈ {5, 6, . . . , 13} and
spill threshold τ ∈ {0, 0.01, 0.05, 0.10}. At δ = 13, this
results in leaf sets of size 109 with τ = 0, and 1163 for
τ = 0.10. For random projection trees, we sample m = 64
dimensions at each call to splitRP.

For each test song q ∈ X ′, and tree t, we compute the
retrieval set with Algorithm 3. The recall for q is the frac-
tion of the true nearest-neighbors kNN(q) contained in the
retrieval set:

R(q, t) = |RETRIEVE(q, t) ∩ kNN(q)| /k. (6)

Note that since true nearest neighbors are always closer than
any other points, they are always ranked first, so precision
and recall are equivalent here.

To evaluate the system, k = 100 exact nearest neighbors
kNN(q) were found from X for each query q ∈ X ′ by a full
linear search over X .

4.4 Retrieval results

Figure 4 lists the nearest-neighbor recall performance for all
tree configurations. As should be expected, for all splitting
rules and spill thresholds, recall performance degrades as the
maximum depth of the tree increases.

Across all spill thresholds τ and tree depths δ, the relative
ordering of performance of the different split rules is essen-
tially constant: splitPCA performs slightly better than splitKD,
and both dramatically outperform splitRP and split2M . This
indicates that for the feature representation under considera-
tion here (optimized codeword histograms), variance reduc-

tion seems to be the most effective strategy for preserving
nearest neighbors in spatial trees.

For small values of τ , recall performance is generally
poor for all split rules. However, as τ increases, recall per-
formance increases across the board. The improvements are
most dramatic for splitPCA. With τ = 0, and δ = 7, the
PCA partition tree has leaf sets of size 6955 (0.8% of X),
and achieves median recall of 0.24. With τ = 0.10 and
δ = 13, the PCA spill tree achieves median recall of 0.53
with a comparable median retrieval set size of 6819 (0.7%
of X): in short, recall is nearly doubled with no appreciable
computational overhead. So, by looking at less than 1% of
the database, the PCA spill tree is able to recover more than
half of the 100 true nearest neighbors for novel test songs.
This contrasts with the filter-and-refine approach [17], which
requires a full scan of the entire database.

4.5 Timing results

Finally, we evaluated the retrieval time necessary to answer
k-nearest neighbor queries with spill trees. We assume that
all songs have already been inserted into the tree, since this is
the typical case for long-term usage. As a result, the retrieval
algorithm can be accelerated by maintaining indices mapping
songs to leaf sets (and vice versa).

We evaluated the retrieval time for PCA spill trees of
depth δ = 13 and threshold τ ∈ {0.05, 0.10}, since they
exhibit practically useful retrieval accuracy. We randomly
selected 1000 test songs and inserted them into the tree prior
to evaluation. For each test song, we compute the time
necessary to retrieve the k nearest training neighbors from
the spill tree (ignoring test songs), for k ∈ {10, 50, 100}.
Finally, for comparison purposes, we measured the time to
compute the true k nearest neighbors by a linear search over
the entire training set.

Our implementation is written in Python/NumPy, 2 and
loads the entire data set into memory. The test machine has
two 1.6GHz Intel Xeon CPUs and 4GB of RAM. Timing
results were collected through the cProfile utility.

Figure 5 lists the average retrieval time for each algorithm.
The times are relatively constant with respect to k: a full lin-
ear scan typically takes approximately 2.4 seconds, while
the τ = 0.10 spill tree takes less than 0.14 seconds, and
the τ = 0.05 tree takes less than 0.02 seconds. In relative
terms, setting τ = 0.10 yields a speedup factor of 17.8, and
τ = 0.05 yields a speedup of 119.5 over the full scan. The
difference in speedup from τ = 0.10 to τ = 0.05 can be ex-
plained by the fact that smaller overlapping regions result in
smaller (and fewer) leaf sets for each query. In practice, this
speed-accuracy trade-off can be optimized for the particular
task at hand: applications requiring only a few neighbors
which may be consumed rapidly (e.g., sequential playlist
generation) may benefit from small values of τ , whereas

2 http://numpy.scipy.org

0.01% 0.1% 1% 10%
0

0.2

0.4

0.6

0.8

1

Retrieval size

R
e
c
a
l
l

τ=0.00

PCA

KD

Random

2−means

0.01% 0.1% 1% 10%
0

0.2

0.4

0.6

0.8

1

Retrieval size

R
e
c
a
l
l

τ=0.01

PCA

KD

Random

2−means

0.01% 0.1% 1% 10%
0

0.2

0.4

0.6

0.8

1

Retrieval size

R
e
c
a
l
l

τ=0.05

PCA

KD

Random

2−means

0.01% 0.1% 1% 10%
0

0.2

0.4

0.6

0.8

1

Retrieval size

R
e
c
a
l
l

τ=0.10

PCA

KD

Random

2−means

Figure 4. Median 100-nearest-neighbor recall for each splitting rule (PCA, KD, 2-means, and random projection), spill threshold
τ ∈ {0, 0.01, 0.05, 0.10}, and tree depth δ ∈ {5, 6, . . . , 13}. Each point along a curve corresponds to a different tree depth δ,
with larger retrieval size indicating smaller δ. For each δ, the corresponding recall point is plotted at the median size of the
retrieval set (as a fraction of the entire database). Error bars correspond to 25th and 75th percentiles of recall for all test queries.

0.02 0.14 1 2 2.5

k=10

k=50

k=100

Retrieval time (s)

Full τ=0.10 τ=0.05

Figure 5. Average time to retrieve k (approximate) nearest
neighbors with a full scan versus PCA spill trees.

applications requiring more neighbors (e.g., browsing recom-
mendations for discovery) may benefit from larger τ .

5. CONCLUSION

We have demonstrated that spatial trees can effectively accel-
erate approximate nearest neighbor retrieval. In particular,
for VQ audio representations, the combination of spill trees
with and PCA splits yields a favorable trade-off between
accuracy and complexity of k-nearest neighbor retrieval.

6. ACKNOWLEDGMENTS

The authors thank Jason Samarin, and acknowledge support
from Qualcomm, Inc., Yahoo! Inc., the Hellman Fellowship
Program, and NSF Grants CCF-0830535 and IIS-1054960.

7. REFERENCES

[1] J.L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18:509–517, Sep. 1975.

[2] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and
Paul Lamere. The million song dataset. In Proceedings of the
12th International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

[3] Léon Bottou and Yoshua Bengio. Convergence properties of
the kmeans algorithm. In Advances in Neural Information Pro-
cessing Systems, volume 7. MIT Press, Denver, 1995.

[4] Rui Cai, Chao Zhang, Lei Zhang, and Wei-Ying Ma. Scalable
music recommendation by search. In International Conference
on Multimedia, pages 1065–1074, 2007.

[5] Lawrence Cayton. Fast nearest neighbor retrieval for bregman
divergences. In International Conference on Machine Learning,
pages 112–119, 2008.

[6] O. Celma. Music Recommendation and Discovery in the Long
Tail. Springer, 2010.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

[8] Sanjoy Dasgupta and Yoav Freund. Random projection trees
and low dimensional manifolds. In ACM Symposium on Theory
of Computing, pages 537–546, 2008.

[9] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.
Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the twentieth annual symposium
on Computational geometry, SCG ’04, pages 253–262, New
York, NY, USA, 2004. ACM.

[10] Christos Faloutsos and King-Ip Lin. Fastmap: a fast algorithm
for indexing, data-mining and visualization. In Proceedings of
ACM SIGMOD, pages 163–174, 1995.

[11] Tony Jebara, Risi Kondor, and Andrew Howard. Probability
product kernels. JMLR, 5:819–844, December 2004.

[12] J.H. Kim, B. Tomasik, and D. Turnbull. Using artist similarity
to propagate semantic information. In ISMIR, 2009.

[13] Ting Liu, Andrew W. Moore, Alexander Gray, and Ke Yang.
An investigation of practical approximate nearest neighbor al-
gorithms. In NIPS, pages 825–832. 2005.

[14] B. Logan. Music recommendation from song sets. In Interna-
tional Symposium on Music Information Retrieval, 2004.

[15] B. McFee, L. Barrington, and G.R.G. Lanckriet. Learn-
ing content similarity for music recommendation, 2011.
http://arxiv.org/1105.2344.

[16] J. Reiss, J.J. Aucouturier, and M. Sandler. Efficient multidimen-
sional searching routines for music information retrieval. In
ISMIR, 2001.

[17] Dominik Schnitzer, Arthur Flexer, and Gerhard Widmer. A
filter-and-refine indexing method for fast similarity search in
millions of music tracks. In ISMIR, 2009.

[18] M. Slaney, K. Weinberger, and W. White. Learning a metric for
music similarity. In ISMIR, pages 313–318, September 2008.

[19] J.K. Uhlmann. Satisfying general proximity/similarity queries
with metric trees. 40(4):175–179, 1991.

[20] Nakul Verma, Samory Kpotufe, and Sanjoy Dasgupta. Which
spatial partition trees are adaptive to intrinsic dimension? In
Uncertainty in Artificial Intelligence, pages 565–574, 2009.

