Partial order embedding with multiple kernels
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Introduction

Goal Embed arbitrary objects into a Euclidean space so that pairwise SDP We learn the embedding by semidefinite programming _ - = - Data ° 55images of 3D-rendered rabbits with varying surface reflectance
distances correspond to human perception of similarity. over the inner-product matrix of embedded points. 13049 relative comparisons obtained from human test subjects [4]

Distances are optimized by maximum variance

Setup ° 8765 edges remain in the constraint graph after pruning
unfolding [2].

e Each pair receives unit margins
Setup e Binary similarity measurements may be too coarse for many applications. * Constraint graph has diameter 55

All margins are preserved, and the diameter bound
e Quantitative similarity varies significantly between people. ensures that an optimum exists.

Left: Non-parametric embedding (SDP)
0 ¢ Right: Out-of-sample extension via radial-basis kernels over intensity
* We focus on relative comparisons: Ut'ol' To extend the embedding to unseen data, we learn a linear projection histograms. Learned metric is a diagonal matrix (LP).
. . Samplie matrix /V.
(4,5, k,€) < d(i,j) < d(k, ) This generalizes to non-linear transformations
by using kernels:

g(gj) :NKQJ 40}

. . Non-parametric Parametric
indicates that 1 and j are more similar than k and L. P

* Relative comparisons can be combined to form a directed graph over
pairs of objects.

K, is the column vector containing the kernel
function evaluated at x and the training set.

e Analyzing this graph helps to simplify the embedding procedure.
We solve for g by optimizing over a PSD matrix W = NTN. ok

* Our embedding method integrates multiple kernels to form a | o |
unifed space. Adding —y Tr(W K) to the objective controls sparsity and lets us

invoke the generalized representer theorem [3].

Constraints are softened and violations are penalized by hinge loss. _aob -
Partial order B B
Multi-  Multiple kernels are combined by learning a separate transformation matrix Data -« 100 images from the Amsterdam Library of Object Images (ALOI), varying
kernel for each kernel, and concatenating the outputs: out-of-plane rotation [5]
Notation X :  Arbitrary set of objects. Not necessarily vectors. N e A taxonomy of 10 object classes

| | . . o
C : Collection of relative comparisons: (1,73,k, 1) Setup * Similarity constraints were generated

2 2
¢! ))—_Feature space N®) g(x) = ( N(®) Ka(jp)) " according to a bottom-up traversal of the | =TT
¢(m) p=1 taxonomy tree, e.g., Clothing

eijke . Desired margin between distances d(i, ) and d(k,{) T

Margins are represented as edges in the constraint graph:
. . N(m) (Orange, Orange, Orange, Lemon),

o ——————— -

i
®----g €; it €; ikt (orange, Lemon, Orange, Smurf).
e o — ] q Input space Output space e Margins shrink exponentially with depth |.
K e e L in the taxonomy.
Transformation matrices are jointly optimized to produce a unified Kernels |
Method ° Process C to remove inconsistent and redundant edges space which optimally integrates all features. * RBF kernels over color histograms in \lommmomd | Nemeooood MSSSoss AR )
RGB channels, and grayscale intensity
® This results in a minimal DAG representation LP Diagonal constraints on 17/ (P) simplifies the optimization from SDP to * Linear kernel over grayscale values to capture shape information
linear programming:
 The diameter of the DAG dictates the diameter of the embedding: w® =0 # W(p) >0 The embedding was formed by learning diagonally-constrained matrices,
- i = Y- :
the diagonals are shown below.
Claim . _ ahted raint DAG. th ot bedd Diagonal weights can be interpreted as measuring the utility of a
or any margl_nl-welg €d constraint DAL, there exists an embedding (kernel, training point) pair in defining the embedding.
g : X — R"~ " that satisfies all margins, and for all 7 # j: .
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Idea * Reduce to non-metric MDS with constant-shift embedding [1]. . ' ' "0 20 % w0 5 e 70 s e oo
K(P) K(P) T W(p) K(P) K(p) RBF Green 0.6518 0.6746 s | | | | | | | | o Green
,I: o J ?’ o .] RBF Blue 0771 7 08349 0 1I0 2I0 3I0 4I0 5IO 6IO 7IO 8I0 9I0 100
But e How should unconstrained distances be computed? NBF Sray bl AT | 1] Ble
nun Unweighted Sum 0.7628 0.7674 10 20 30 40 50 60 70 80 90 100
* How should we extend to unseen data? T
. . o MKPOE 0.9483 ¢ | 1 Gray
o How should we integrate multiple feature modalities? e
Constraint Satisfaction Learned Weights

(Training set)
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